Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.
Pharmacol Res Perspect. 2022 Oct;10(5):e00994. doi: 10.1002/prp2.994.
G protein-coupled receptors (GPCRs) are valuable therapeutic targets for many diseases. A central question of GPCR drug discovery is to understand what determines the agonism or antagonism of ligands that bind them. Ligands exert their action via the interactions in the ligand binding pocket. We hypothesized that there is a common set of receptor interactions made by ligands of diverse structures that mediate their action and that among a large dataset of different ligands, the functionally important interactions will be over-represented. We computationally docked ~2700 known β2AR ligands to multiple β2AR structures, generating ca 75 000 docking poses and predicted all atomic interactions between the receptor and the ligand. We used machine learning (ML) techniques to identify specific interactions that correlate with the agonist or antagonist activity of these ligands. We demonstrate with the application of ML methods that it is possible to identify the key interactions associated with agonism or antagonism of ligands. The most representative interactions for agonist ligands involve K97 , F194 , S203 , S204 , S207 , H296 , and K305 . Meanwhile, the antagonist ligands made interactions with W286 and Y316 , both residues considered to be important in GPCR activation. The interpretation of ML analysis in human understandable form allowed us to construct an exquisitely detailed structure-activity relationship that identifies small changes to the ligands that invert their pharmacological activity and thus helps to guide the drug discovery process. This approach can be readily applied to any drug target.
G 蛋白偶联受体(GPCRs)是许多疾病的有价值的治疗靶点。GPCR 药物发现的一个核心问题是了解哪些因素决定了结合它们的配体的激动剂或拮抗剂性质。配体通过结合口袋中的相互作用发挥作用。我们假设存在一组由不同结构的配体介导其作用的共同受体相互作用,并且在大量不同配体的数据集,功能重要的相互作用将被过度代表。我们通过计算将大约 2700 种已知的β2AR 配体对接至多个β2AR 结构,生成大约 75000 个对接构象,并预测了受体与配体之间的所有原子相互作用。我们使用机器学习(ML)技术来识别与这些配体的激动剂或拮抗剂活性相关的特定相互作用。我们通过 ML 方法的应用证明,识别与配体激动剂或拮抗剂性质相关的关键相互作用是可能的。激动剂配体的最具代表性的相互作用涉及 K97、F194、S203、S204、S207、H296 和 K305。同时,拮抗剂配体与 W286 和 Y316 发生相互作用,这两个残基被认为在 GPCR 激活中很重要。以人类可理解的形式解释 ML 分析使我们能够构建一个非常详细的结构-活性关系,该关系识别出改变配体的微小变化,从而反转其药理活性,从而有助于指导药物发现过程。这种方法可以很容易地应用于任何药物靶点。