Anthony T G
Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
Domest Anim Endocrinol. 2016 Jul;56 Suppl(Suppl):S23-32. doi: 10.1016/j.domaniend.2016.02.012.
Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress.
在气候变化以及对畜牧业可持续发展的关注背景下,全球对充足蛋白质营养的需求不断增加,这就需要采用新的、更有效的方法来促进牲畜生长和生产。当新合成速率超过更新速率时,就会实现合成代谢生长,从而产生正的净蛋白质平衡。相反,瘦体重的恶化或萎缩是净负蛋白质平衡的结果。在生命早期和生长阶段,肌肉质量的增加是由mRNA翻译水平上蛋白质合成的增加所驱动的。在整个生命过程中,肌肉质量还会受到自噬和泛素蛋白酶体途径等降解过程的进一步影响。多个信号转导网络与质量控制机制一起指导和协调这些过程,以维持蛋白质稳态(蛋白质动态平衡)。遗传、激素和环境刺激各自影响蛋白质稳态控制,改变肌肉生长的能力和/或效率。本文概述了评估肌肉蛋白质平衡和蛋白质稳态的最新研究结果及当前方法。目前识别新控制点的努力有可能通过选择性育种设计或开发应激适应策略,在环境压力期间更好地促进生长和健康寿命。