Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St, Louisville, KY, 40202, USA.
Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9567-70. doi: 10.1002/anie.201603501. Epub 2016 Jun 27.
Protein dynamics occurring on a wide range of timescales play a crucial role in governing protein function. Particularly, motions between the globular rotational correlation time (τc ) and 40 μs (supra-τc window), strongly influence molecular recognition. This supra-τc window was previously hidden, owing to a lack of experimental methods. Recently, we have developed a high-power relaxation dispersion (RD) experiment for measuring kinetics as fast as 4 μs. For the first time, this method, performed under super-cooled conditions, enabled us to detect a global motion in the first β-turn of the third IgG-binding domain of protein G (GB3), which was extrapolated to 371±115 ns at 310 K. Furthermore, the same residues show the plasticity in the model-free residual dipolar coupling (RDC) order parameters and in an ensemble encoding the supra-τc dynamics. This β-turn is involved in antibody binding, exhibiting the potential link of the observed supra-τc motion with molecular recognition.
蛋白质动力学在广泛的时间尺度上发生,对控制蛋白质功能起着至关重要的作用。特别是在球蛋白旋转相关时间(τc)和 40μs(超τc 窗口)之间发生的运动,强烈影响分子识别。由于缺乏实验方法,这个超τc 窗口以前是隐藏的。最近,我们开发了一种高功率弛豫分散(RD)实验,用于测量最快可达 4μs 的动力学。首次在过冷条件下进行的这种方法使我们能够检测到蛋白质 G(GB3)的第三个 IgG 结合结构域的第一个β-转角中的整体运动,该运动在 310K 时推断为 371±115ns。此外,相同的残基在无模型残差偶极耦合(RDC)序参数和表示超τc 动力学的集合中表现出塑性。这个β-转角参与抗体结合,显示出观察到的超τc 运动与分子识别的潜在联系。