Suppr超能文献

环上珍贵的氟:用于生物系统的氟核磁共振

The precious fluorine on the ring: fluorine NMR for biological systems.

作者信息

Boeszoermenyi Andras, Ogórek Barbara, Jain Akshay, Arthanari Haribabu, Wagner Gerhard

机构信息

Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

出版信息

J Biomol NMR. 2020 Sep;74(8-9):365-379. doi: 10.1007/s10858-020-00331-z. Epub 2020 Jul 10.

Abstract

The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF labeling and (ii) aromatic F-C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.

摘要

人们很早就认识到氟 - 19原子核具有核磁共振光谱的特殊性质。它的天然丰度为100%,具有较高的旋磁比(与氢相比灵敏度为83%),其化学位移对周围环境极为敏感,且在生物系统中几乎不存在,注定会成为一种备受青睐的核磁共振探针,用于标记小分子和大分子。然而,在早期一系列动物研究探索了氟化芳香族氨基酸的摄取情况之后,由于在高磁场下化学位移各向异性(CSA)导致谱线展宽,氟核磁共振失去了 popularity,尤其是在大分子系统中。最近,两种正交方法,(i)碳 - 氟标记和(ii)利用横向弛豫优化光谱(TROSY)效应的芳香族氟 - 碳标记,已成功应用于研究大型生物分子系统。从这个角度来看,我们将讨论氟化芳香族氨基酸的早期迷人工作,这揭示了这些非天然氨基酸在生物核磁共振中的巨大潜力,以及鉴于最近的发展,氟核磁共振在表征蛋白质和核酸结构、功能及动力学方面的潜力。最后,我们探讨如何利用氟核磁共振来实施类似于生理条件的小分子或片段筛选,并讨论跟踪活细胞中小分子命运的机会。

相似文献

1
The precious fluorine on the ring: fluorine NMR for biological systems.
J Biomol NMR. 2020 Sep;74(8-9):365-379. doi: 10.1007/s10858-020-00331-z. Epub 2020 Jul 10.
2
Aromatic F-C TROSY: a background-free approach to probe biomolecular structure, function, and dynamics.
Nat Methods. 2019 Apr;16(4):333-340. doi: 10.1038/s41592-019-0334-x. Epub 2019 Mar 11.
3
2-Fluorotyrosine is a valuable but understudied amino acid for protein-observed F NMR.
J Biomol NMR. 2020 Jan;74(1):61-69. doi: 10.1007/s10858-019-00290-0. Epub 2019 Nov 23.
4
Small, but powerful and attractive: F in biomolecular NMR.
Structure. 2022 Jan 6;30(1):6-14. doi: 10.1016/j.str.2021.09.009. Epub 2021 Dec 13.
5
Fluorinated Tags to Study Protein Conformation and Interactions Using F NMR.
Chembiochem. 2024 Aug 1;25(15):e202400195. doi: 10.1002/cbic.202400195. Epub 2024 Jun 24.
6
Fluorine Labeling and F NMR Spectroscopy to Study Biological Molecules and Molecular Complexes.
Chemistry. 2025 Jan 9;31(2):e202402820. doi: 10.1002/chem.202402820. Epub 2024 Nov 18.
7
Feasibility of trifluoromethyl TROSY NMR at high magnetic fields.
J Biomol NMR. 2019 Nov;73(10-11):519-523. doi: 10.1007/s10858-019-00266-0. Epub 2019 Jul 2.
8
Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: aromatic substituents.
J Magn Reson. 2008 Mar;191(1):7-15. doi: 10.1016/j.jmr.2007.11.017. Epub 2007 Dec 3.
9
Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery.
J Med Chem. 2016 Jun 9;59(11):5158-71. doi: 10.1021/acs.jmedchem.5b01447. Epub 2015 Dec 14.
10
(19)F-modified proteins and (19)F-containing ligands as tools in solution NMR studies of protein interactions.
Methods Enzymol. 2015;565:67-95. doi: 10.1016/bs.mie.2015.05.014. Epub 2015 Jun 16.

引用本文的文献

2
Site-Specific Incorporation of Fluorinated Prolines into Proteins and Their Impact on Neighbouring Residues.
Chemistry. 2025 Jan 27;31(6):e202403718. doi: 10.1002/chem.202403718. Epub 2024 Dec 30.
3
Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications.
J Biomol NMR. 2024 Sep;78(3):161-167. doi: 10.1007/s10858-024-00442-x. Epub 2024 Jul 27.
4
Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation.
Chem Rev. 2024 Aug 14;124(15):9113-9135. doi: 10.1021/acs.chemrev.3c00855. Epub 2024 Jul 15.
5
Decorating phenylalanine side-chains with triple labeled C/F/H isotope patterns.
J Biomol NMR. 2024 Sep;78(3):139-147. doi: 10.1007/s10858-024-00440-z. Epub 2024 Mar 21.
6
Fluorine NMR study of proline-rich sequences using fluoroprolines.
Magn Reson (Gott). 2021 Nov 9;2(2):795-813. doi: 10.5194/mr-2-795-2021. eCollection 2021.
7
Chiral CoY Propeller-Shaped Chemosensory Platforms Based on F-NMR.
Inorg Chem. 2023 Feb 13;62(6):2680-2693. doi: 10.1021/acs.inorgchem.2c03737. Epub 2023 Jan 30.
8
A call to order: Examining structured domains in biomolecular condensates.
J Magn Reson. 2023 Jan;346:107318. doi: 10.1016/j.jmr.2022.107318.
9
NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins.
J Phys Chem B. 2023 Jan 26;127(3):591-599. doi: 10.1021/acs.jpcb.2c07258. Epub 2023 Jan 14.

本文引用的文献

1
Aromatic F- C TROSY-[ F, C]-Pyrimidine Labeling for NMR Spectroscopy of RNA.
Angew Chem Int Ed Engl. 2020 Sep 21;59(39):17062-17069. doi: 10.1002/anie.202006577. Epub 2020 Jul 29.
2
A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12836-12846. doi: 10.1073/pnas.2004317117. Epub 2020 May 26.
3
Fluorine NMR functional screening: from purified enzymes to human intact living cells.
J Biomol NMR. 2020 Nov;74(10-11):613-631. doi: 10.1007/s10858-020-00311-3. Epub 2020 Apr 28.
5
Synthesis of Trifluoromethylated Purine Ribonucleotides and Their Evaluation as F NMR Probes.
J Org Chem. 2020 Mar 6;85(5):3440-3453. doi: 10.1021/acs.joc.9b03198. Epub 2020 Feb 13.
6
Expression, purification, and functional reconstitution of F-labeled cytochrome b5 in peptide nanodiscs for NMR studies.
Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183194. doi: 10.1016/j.bbamem.2020.183194. Epub 2020 Jan 15.
7
Evaluating the Advantages of Using 3D-Enriched Fragments for Targeting BET Bromodomains.
ACS Med Chem Lett. 2019 Nov 22;10(12):1648-1654. doi: 10.1021/acsmedchemlett.9b00414. eCollection 2019 Dec 12.
8
Lipoprotein Drug Delivery Vehicles for Cancer: Rationale and Reason.
Int J Mol Sci. 2019 Dec 15;20(24):6327. doi: 10.3390/ijms20246327.
9
Unveiling invisible protein states with NMR spectroscopy.
Curr Opin Struct Biol. 2020 Feb;60:39-49. doi: 10.1016/j.sbi.2019.10.008. Epub 2019 Dec 11.
10
2-Fluorotyrosine is a valuable but understudied amino acid for protein-observed F NMR.
J Biomol NMR. 2020 Jan;74(1):61-69. doi: 10.1007/s10858-019-00290-0. Epub 2019 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验