Suppr超能文献

[基于禁忌搜索算法的贝叶斯网络分析冠心病危险因素]

[Using the Tabu-search-algorithm-based Bayesian network to analyze the risk factors of coronary heart diseases].

作者信息

Wei Z, Zhang X L, Rao H X, Wang H F, Wang X, Qiu L X

机构信息

Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.

Department of Information, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an 710054, China.

出版信息

Zhonghua Liu Xing Bing Xue Za Zhi. 2016 Jun;37(6):895-9. doi: 10.3760/cma.j.issn.0254-6450.2016.06.031.

Abstract

Under the available data gathered from a coronary study questionnaires with 10 792 cases, this article constructs a Bayesian network model based on the tabu search algorithm and calculates the conditional probability of each node, using the Maximum-likelihood. Pros and cons of the Bayesian network model are evaluated to compare against the logistic regression model in the analysis of coronary factors. Applicability of this network model in clinical study is also investigated. Results show that Bayesian network model can reveal the complex correlations among influencing factors on the coronary and the relationship with coronary heart diseases. Bayesian network model seems promising and more practical than the logistic regression model in analyzing the influencing factors of coronary heart disease.

摘要

在从一项针对10792例病例的冠状动脉研究调查问卷收集的现有数据基础上,本文构建了一个基于禁忌搜索算法的贝叶斯网络模型,并使用最大似然法计算每个节点的条件概率。对贝叶斯网络模型的优缺点进行了评估,以便在冠状动脉因素分析中与逻辑回归模型进行比较。还研究了该网络模型在临床研究中的适用性。结果表明,贝叶斯网络模型可以揭示冠状动脉影响因素之间的复杂相关性以及与冠心病的关系。在分析冠心病的影响因素方面,贝叶斯网络模型似乎比逻辑回归模型更有前景且更实用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验