Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
Nat Mater. 2016 Sep;15(9):974-80. doi: 10.1038/nmat4674. Epub 2016 Jun 27.
The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.
弹性模量和热膨胀系数是弹性硬分子材料的基本性质,在拉伸和压缩载荷下假定是相同的(对称的)。我们表明,分子材料可以具有明显的不对称弹性模量和热膨胀系数,这与限制分子网络连接性的末端化学基团密切相关。在压缩时,末端基团的空间位阻相互作用会使网络变硬,而在拉伸时则相互作用较小,从而使网络断开。弹性和热膨胀行为的不对称性的存在对分子材料建模的计算方法有深远的影响,对热机械应变及其相关弹性应力也有实际的影响。我们开发了一个设计空间来控制分子材料的弹性不对称程度,这是理解其在器件技术中的集成的重要一步。