Suppr超能文献

运动、训练与男性和女性的下丘脑-垂体-性腺轴

Exercise, Training, and the Hypothalamic-Pituitary-Gonadal Axis in Men and Women.

作者信息

Cano Sokoloff Natalia, Misra Madhusmita, Ackerman Kathryn E

出版信息

Front Horm Res. 2016;47:27-43. doi: 10.1159/000445154. Epub 2016 Jun 27.

Abstract

The hypothalamic-pituitary-gonadal (HPG) axis is essential for adequate responses to exercise and training both acutely and chronically. Both testosterone and estrogen play leading roles in neuromuscular adaptation to exercise in males and females. The purpose of this chapter is to illustrate the physiological and pathological changes that occur in the HPG axis secondary to exercise and training. In males, testosterone increases with acute bouts of exercise, but long-term effects are less clear, with evidence of lower testosterone in endurance athletes. Restricted energy availability may negatively affect hormone levels in male endurance athletes, but data regarding low energy availability and its impact on the HPG axis are limited in male athletes. Conversely, in females there is significant evidence that decreased energy availability inhibits the HPG axis, leading to menstrual irregularities and lower bone density. Hormonal changes secondary to acute bouts of exercise are more challenging to interpret in females due to menstrual variability, which traditionally has not been taken into account in many studies. However, some evidence supports an increase in testosterone and estradiol with acute exercise. More work is needed to elucidate the relationships among energy availability, basal hormonal fluctuations, and exercise, and their collective effects on the HPG axis.

摘要

下丘脑-垂体-性腺(HPG)轴对于急性和慢性运动及训练的充分反应至关重要。睾酮和雌激素在男性和女性对运动的神经肌肉适应中均起主要作用。本章的目的是阐述运动和训练继发于HPG轴的生理和病理变化。在男性中,睾酮会随着急性运动发作而增加,但长期影响尚不清楚,有证据表明耐力运动员的睾酮水平较低。能量供应受限可能会对男性耐力运动员的激素水平产生负面影响,但关于低能量供应及其对HPG轴影响的数据在男性运动员中有限。相反,在女性中,有大量证据表明能量供应减少会抑制HPG轴,导致月经不调和骨密度降低。由于月经周期的变异性,急性运动发作继发的激素变化在女性中更难解释,传统上许多研究并未考虑这一点。然而,一些证据支持急性运动时睾酮和雌二醇增加。需要更多的研究来阐明能量供应、基础激素波动和运动之间的关系,以及它们对HPG轴的综合影响。

相似文献

1
Exercise, Training, and the Hypothalamic-Pituitary-Gonadal Axis in Men and Women.
Front Horm Res. 2016;47:27-43. doi: 10.1159/000445154. Epub 2016 Jun 27.
2
Exercise and the Hypothalamo-Pituitary-Adrenal Axis.
Front Horm Res. 2016;47:12-26. doi: 10.1159/000445149. Epub 2016 Jun 27.
4
Neuroendocrine system and mental function in sedentary and endurance-trained elderly males.
Int J Sports Med. 1999 Apr;20(3):159-66. doi: 10.1055/s-2007-971111.
5
Testosterone and endurance exercise: development of the "exercise-hypogonadal male condition".
Acta Physiol Hung. 2005;92(2):121-37. doi: 10.1556/APhysiol.92.2005.2.3.
6
Food restriction negatively affects multiple levels of the reproductive axis in male house finches, Haemorhous mexicanus.
J Exp Biol. 2015 Sep;218(Pt 17):2694-704. doi: 10.1242/jeb.123323. Epub 2015 Jul 2.
7
The effects of acute exercise on pulsatile LH release in high-mileage male runners.
Clin Endocrinol (Oxf). 1989 Nov;31(5):617-21. doi: 10.1111/j.1365-2265.1989.tb01286.x.
8
Developmental programming of the HPA and HPG axes by early-life stress in male and female song sparrows.
Gen Comp Endocrinol. 2014 Jan 15;196:72-80. doi: 10.1016/j.ygcen.2013.11.014. Epub 2013 Nov 26.
9
Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes.
Med Sci Sports Exerc. 1998 Mar;30(3):407-14. doi: 10.1097/00005768-199803000-00011.

引用本文的文献

1
The relationship between abdominal fat and sleep quality after combined exercise in patients with type 2 diabetes mellitus.
Front Endocrinol (Lausanne). 2025 Jun 27;16:1471608. doi: 10.3389/fendo.2025.1471608. eCollection 2025.
6
7
Untargeted Metabolomics and Proteomics-Based Research of the Long-Term Exercise on Human Body.
Appl Biochem Biotechnol. 2025 May;197(5):3363-3381. doi: 10.1007/s12010-025-05195-3. Epub 2025 Feb 12.
8
Exercise and endometriosis-is there a promising future? A narrative review.
Ir J Med Sci. 2024 Oct;193(5):2375-2387. doi: 10.1007/s11845-024-03733-2. Epub 2024 Jun 25.

本文引用的文献

1
Hyperandrogenism in female athletes with functional hypothalamic amenorrhea: a distinct phenotype.
Int J Womens Health. 2015 Jan 13;7:103-11. doi: 10.2147/IJWH.S73011. eCollection 2015.
2
Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes.
Med Sci Sports Exerc. 2015 Aug;47(8):1577-86. doi: 10.1249/MSS.0000000000000574.
3
Serum androgen levels in elite female athletes.
J Clin Endocrinol Metab. 2014 Nov;99(11):4328-35. doi: 10.1210/jc.2014-1391. Epub 2014 Aug 19.
4
The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S).
Br J Sports Med. 2014 Apr;48(7):491-7. doi: 10.1136/bjsports-2014-093502.
5
Endocrine profiles in 693 elite athletes in the postcompetition setting.
Clin Endocrinol (Oxf). 2014 Aug;81(2):294-305. doi: 10.1111/cen.12445. Epub 2014 Apr 2.
7
Molecular diagnosis of 5α-reductase deficiency in 4 elite young female athletes through hormonal screening for hyperandrogenism.
J Clin Endocrinol Metab. 2013 Jun;98(6):E1055-9. doi: 10.1210/jc.2012-3893. Epub 2013 Apr 30.
8
Body composition and endocrine profile of male Olympic athletes striving for leanness.
Clin J Sport Med. 2013 May;23(3):197-201. doi: 10.1097/JSM.0b013e31827a8809.
10
The female athlete triad.
Sports Health. 2012 Jul;4(4):302-11. doi: 10.1177/1941738112439685.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验