Suppr超能文献

心脏影像建模:心脏病研究的广度与深度

Cardiac image modelling: Breadth and depth in heart disease.

作者信息

Suinesiaputra Avan, McCulloch Andrew D, Nash Martyn P, Pontre Beau, Young Alistair A

机构信息

Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.

Department of Bioengineering, University of California San Diego, USA.

出版信息

Med Image Anal. 2016 Oct;33:38-43. doi: 10.1016/j.media.2016.06.027. Epub 2016 Jun 17.

Abstract

With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction.

摘要

随着大规模成像研究和大健康数据的出现,以及分析、机器学习和计算图像分析方法相应的发展,现在有了令人兴奋的机会来加深我们对心脏病机制和特征的理解。两个新兴领域是心脏重塑的计算分析(疾病导致的形状和运动变化)以及生理学和力学的计算分析,以从无创成像估计生物物理特性。目前全球正在进行的许多大型队列研究都是基于无创成像技术专门设计的,以便获得有关心脏病从无症状到临床表现发展的新信息。这些研究为人群变异和疾病发展的量化提供了前所未有的广度。此外,对于个体患者,现在可以通过使用计算模型解释详细的成像数据来确定健康和疾病状态下心肌组织的生物物理特性。为了使这些针对人群和患者的计算建模方法进一步发展,我们需要用于算法比较和验证的开放基准、数据和算法的开放共享,以及在患者管理和护理中临床疗效的证明。人群和患者特定建模的结合将为心脏病机制,特别是心力衰竭、先天性心脏病、心肌梗死、收缩功能障碍和舒张功能障碍的发展提供新的见解。

相似文献

1
Cardiac image modelling: Breadth and depth in heart disease.
Med Image Anal. 2016 Oct;33:38-43. doi: 10.1016/j.media.2016.06.027. Epub 2016 Jun 17.
2
Computational cardiac atlases: from patient to population and back.
Exp Physiol. 2009 May;94(5):578-96. doi: 10.1113/expphysiol.2008.044081. Epub 2008 Dec 19.
3
Challenges of cardiac image analysis in large-scale population-based studies.
Curr Cardiol Rep. 2015 Mar;17(3):563. doi: 10.1007/s11886-015-0563-2.
4
Estimation of cardiac motion in cine-MRI sequences by correlation transform optical flow of monogenic features distance.
Phys Med Biol. 2016 Dec 21;61(24):8640-8663. doi: 10.1088/1361-6560/61/24/8640. Epub 2016 Nov 23.
5
Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.
J Cardiovasc Comput Tomogr. 2018 Jan-Feb;12(1):16-27. doi: 10.1016/j.jcct.2017.11.004. Epub 2017 Nov 16.
6
The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.
Europace. 2016 Dec;18(suppl 4):iv163-iv172. doi: 10.1093/europace/euw359.
7
Image-Based Predictive Modeling of Heart Mechanics.
Annu Rev Biomed Eng. 2015;17:351-83. doi: 10.1146/annurev-bioeng-071114-040609.
9
A multimodal spatiotemporal cardiac motion atlas from MR and ultrasound data.
Med Image Anal. 2017 Aug;40:96-110. doi: 10.1016/j.media.2017.06.002. Epub 2017 Jun 13.
10
Image-Based Investigation of Human in Vivo Myofibre Strain.
IEEE Trans Med Imaging. 2016 Nov;35(11):2486-2496. doi: 10.1109/TMI.2016.2580573. Epub 2016 Jun 14.

引用本文的文献

1
A deep learning approach for fully automated cardiac shape modeling in tetralogy of Fallot.
J Cardiovasc Magn Reson. 2023 Feb 27;25(1):15. doi: 10.1186/s12968-023-00924-1.
4
Applications of artificial intelligence in cardiovascular imaging.
Nat Rev Cardiol. 2021 Aug;18(8):600-609. doi: 10.1038/s41569-021-00527-2. Epub 2021 Mar 12.
5
Pathological Cluster Identification by Unsupervised Analysis in 3,822 UK Biobank Cardiac MRIs.
Front Cardiovasc Med. 2020 Nov 16;7:539788. doi: 10.3389/fcvm.2020.539788. eCollection 2020.
6
AI tracks a beating heart's function over time.
Nature. 2020 Apr;580(7802):192-194. doi: 10.1038/d41586-020-00819-6.
7
The New Wave of Cardiovascular Biomechanics.
JACC Cardiovasc Imaging. 2019 Jul;12(7 Pt 1):1297-1299. doi: 10.1016/j.jcmg.2019.05.013.
8
Quest for cardiovascular interventions: precise modeling and 3D printing of heart valves.
J Biol Eng. 2019 Feb 6;13:12. doi: 10.1186/s13036-018-0132-5. eCollection 2019.
9
Computational models in cardiology.
Nat Rev Cardiol. 2019 Feb;16(2):100-111. doi: 10.1038/s41569-018-0104-y.
10
SiSSR: Simultaneous subdivision surface registration for the quantification of cardiac function from computed tomography in canines.
Med Image Anal. 2018 May;46:215-228. doi: 10.1016/j.media.2018.03.009. Epub 2018 Mar 29.

本文引用的文献

3
Image-Based Predictive Modeling of Heart Mechanics.
Annu Rev Biomed Eng. 2015;17:351-83. doi: 10.1146/annurev-bioeng-071114-040609.
5
A multiscale model for the study of cardiac biomechanics in single-ventricle surgeries: a clinical case.
Interface Focus. 2015 Apr 6;5(2):20140079. doi: 10.1098/rsfs.2014.0079.
6
Rapid D-Affine biventricular cardiac function with polar prediction.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):546-53. doi: 10.1007/978-3-319-10470-6_68.
7
Big heart data: advancing health informatics through data sharing in cardiovascular imaging.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1283-90. doi: 10.1109/JBHI.2014.2370952. Epub 2014 Nov 14.
8
Atlas-based quantification of cardiac remodeling due to myocardial infarction.
PLoS One. 2014 Oct 31;9(10):e110243. doi: 10.1371/journal.pone.0110243. eCollection 2014.
9
Left ventricular shape variation in asymptomatic populations: the Multi-Ethnic Study of Atherosclerosis.
J Cardiovasc Magn Reson. 2014 Jul 30;16(1):56. doi: 10.1186/s12968-014-0056-2.
10
Potential of magnetic resonance for imaging the fetal heart.
Semin Fetal Neonatal Med. 2013 Oct;18(5):286-97. doi: 10.1016/j.siny.2013.05.006. Epub 2013 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验