Suinesiaputra Avan, McCulloch Andrew D, Nash Martyn P, Pontre Beau, Young Alistair A
Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
Department of Bioengineering, University of California San Diego, USA.
Med Image Anal. 2016 Oct;33:38-43. doi: 10.1016/j.media.2016.06.027. Epub 2016 Jun 17.
With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction.
随着大规模成像研究和大健康数据的出现,以及分析、机器学习和计算图像分析方法相应的发展,现在有了令人兴奋的机会来加深我们对心脏病机制和特征的理解。两个新兴领域是心脏重塑的计算分析(疾病导致的形状和运动变化)以及生理学和力学的计算分析,以从无创成像估计生物物理特性。目前全球正在进行的许多大型队列研究都是基于无创成像技术专门设计的,以便获得有关心脏病从无症状到临床表现发展的新信息。这些研究为人群变异和疾病发展的量化提供了前所未有的广度。此外,对于个体患者,现在可以通过使用计算模型解释详细的成像数据来确定健康和疾病状态下心肌组织的生物物理特性。为了使这些针对人群和患者的计算建模方法进一步发展,我们需要用于算法比较和验证的开放基准、数据和算法的开放共享,以及在患者管理和护理中临床疗效的证明。人群和患者特定建模的结合将为心脏病机制,特别是心力衰竭、先天性心脏病、心肌梗死、收缩功能障碍和舒张功能障碍的发展提供新的见解。