Suppr超能文献

心脏病学中的计算模型。

Computational models in cardiology.

机构信息

Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands.

出版信息

Nat Rev Cardiol. 2019 Feb;16(2):100-111. doi: 10.1038/s41569-018-0104-y.

Abstract

The treatment of individual patients in cardiology practice increasingly relies on advanced imaging, genetic screening and devices. As the amount of imaging and other diagnostic data increases, paralleled by the greater capacity to personalize treatment, the difficulty of using the full array of measurements of a patient to determine an optimal treatment seems also to be paradoxically increasing. Computational models are progressively addressing this issue by providing a common framework for integrating multiple data sets from individual patients. These models, which are based on physiology and physics rather than on population statistics, enable computational simulations to reveal diagnostic information that would have otherwise remained concealed and to predict treatment outcomes for individual patients. The inherent need for patient-specific models in cardiology is clear and is driving the rapid development of tools and techniques for creating personalized methods to guide pharmaceutical therapy, deployment of devices and surgical interventions.

摘要

心脏病学实践中对个体患者的治疗越来越依赖于先进的影像学、基因筛查和器械。随着影像学和其他诊断数据的增加,以及治疗个性化能力的提高,利用患者的全部测量值来确定最佳治疗方案的难度似乎也在增加。计算模型通过为整合来自个体患者的多个数据集提供一个通用框架来逐步解决这个问题。这些模型基于生理学和物理学,而不是基于人口统计学,使计算模拟能够揭示原本隐藏的诊断信息,并预测个体患者的治疗结果。心脏病学中对患者特异性模型的内在需求是显而易见的,这推动了用于创建个性化方法以指导药物治疗、器械部署和手术干预的工具和技术的快速发展。

相似文献

1
Computational models in cardiology.
Nat Rev Cardiol. 2019 Feb;16(2):100-111. doi: 10.1038/s41569-018-0104-y.
3
Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop.
Europace. 2016 Sep;18(9):1287-98. doi: 10.1093/europace/euv320. Epub 2015 Nov 29.
4
Precision medicine in cardiology.
Nat Rev Cardiol. 2016 Oct;13(10):591-602. doi: 10.1038/nrcardio.2016.101. Epub 2016 Jun 30.
5
["Made-to-measure cardiology", personalized cardiology for the patient!].
Presse Med. 2015 Jul-Aug;44(7-8):728-9. doi: 10.1016/j.lpm.2015.03.021. Epub 2015 Jul 2.
6
Nuclear Cardiology in the Era of Precision Medicine: Tailoring Treatment to the Individual Patient.
Cureus. 2024 Apr 24;16(4):e58960. doi: 10.7759/cureus.58960. eCollection 2024 Apr.
7
Personalized Interventions: A Reality in the Next 20 Years or Pie in the Sky.
Pediatr Cardiol. 2020 Mar;41(3):486-502. doi: 10.1007/s00246-020-02303-4. Epub 2020 Mar 20.
8
Precision Medicine Approaches in Cardiology and Personalized Therapies for Improved Patient Outcomes: A systematic review.
Curr Probl Cardiol. 2024 May;49(5):102470. doi: 10.1016/j.cpcardiol.2024.102470. Epub 2024 Feb 16.
9
Artificial Intelligence in Cardiology.
J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.
10
Omics, Big Data, and Precision Medicine in Cardiovascular Sciences.
Circ Res. 2018 Apr 27;122(9):1165-1168. doi: 10.1161/CIRCRESAHA.118.313161.

引用本文的文献

1
The computational model lifecycle: Opportunities and challenges for computational medicine in the healthcare ecosystem.
Sci Prog. 2025 Jul-Sep;108(3):368504251344145. doi: 10.1177/00368504251344145. Epub 2025 Sep 1.
3
Cardiac digital twins: a tool to investigate the function and treatment of the diabetic heart.
Cardiovasc Diabetol. 2025 Jul 18;24(1):293. doi: 10.1186/s12933-025-02839-w.
4
The impact of experimental designs & system sloppiness on the personalisation process: A cardiovascular perspective.
PLoS One. 2025 Jun 24;20(6):e0326112. doi: 10.1371/journal.pone.0326112. eCollection 2025.
6
Computational modelling of biological systems now and then: revisiting tools and visions from the beginning of the century.
Philos Trans A Math Phys Eng Sci. 2025 May 8;383(2296):20230384. doi: 10.1098/rsta.2023.0384.
7
Simulation Optimization of Spatiotemporal Dynamics in 3D Geometries.
IEEE Trans Autom Sci Eng. 2025;22:10442-10456. doi: 10.1109/tase.2024.3524132. Epub 2025 Jan 6.
8
A Neural Network Finite Element Trileaflet Heart Valve Model Incorporating Multi-Body Contact.
Int J Numer Method Biomed Eng. 2025 Apr;41(4):e70038. doi: 10.1002/cnm.70038.
9
Self-organizing network simulation of cardiac electrical dynamics.
Chaos. 2025 Apr 1;35(4). doi: 10.1063/5.0261019.
10
Numerical accuracy of closed-loop steady state in a zero-dimensional cardiovascular model.
Philos Trans A Math Phys Eng Sci. 2025 Apr 2;383(2293):20240208. doi: 10.1098/rsta.2024.0208.

本文引用的文献

2
Enhancing Response in the Cardiac Resynchronization Therapy Patient: The 3B Perspective-Bench, Bits, and Bedside.
JACC Clin Electrophysiol. 2017 Nov;3(11):1203-1219. doi: 10.1016/j.jacep.2017.08.005. Epub 2017 Nov 6.
3
Personalized computational modeling of left atrial geometry and transmural myofiber architecture.
Med Image Anal. 2018 Jul;47:180-190. doi: 10.1016/j.media.2018.04.001. Epub 2018 Apr 5.
4
A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements.
Med Image Anal. 2018 Jul;47:153-163. doi: 10.1016/j.media.2018.04.005. Epub 2018 Apr 27.
5
Emerging therapeutic targets in the short QT syndrome.
Expert Opin Ther Targets. 2018 May;22(5):439-451. doi: 10.1080/14728222.2018.1470621.
6
Electrical Substrates Driving Response to Cardiac Resynchronization Therapy: A Combined Clinical-Computational Evaluation.
Circ Arrhythm Electrophysiol. 2018 Apr;11(4):e005647. doi: 10.1161/CIRCEP.117.005647.
7
A Comparison of Phenomenologic Growth Laws for Myocardial Hypertrophy.
J Elast. 2017 Dec;129(1-2):257-281. doi: 10.1007/s10659-017-9631-8. Epub 2017 Mar 1.
8
Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.
Int J Cardiol. 2018 Jul 1;262:57-63. doi: 10.1016/j.ijcard.2018.03.098. Epub 2018 Mar 29.
10
Structural Immaturity of Human iPSC-Derived Cardiomyocytes: Investigation of Effects on Function and Disease Modeling.
Front Physiol. 2018 Feb 7;9:80. doi: 10.3389/fphys.2018.00080. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验