Suppr超能文献

地理加权回归作为一种广义沃姆布林法以检测基因流动的障碍。

Geographically weighted regression as a generalized Wombling to detect barriers to gene flow.

作者信息

Diniz-Filho José Alexandre Felizola, Soares Thannya Nascimento, de Campos Telles Mariana Pires

机构信息

Departamento de Ecologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.

Laboratório de Genética & Biodiversidade, Departamento de Genética, ICB, UFG, Goiânia, GO, Brazil.

出版信息

Genetica. 2016 Aug;144(4):425-33. doi: 10.1007/s10709-016-9911-4. Epub 2016 Jun 29.

Abstract

Barriers to gene flow play an important role in structuring populations, especially in human-modified landscapes, and several methods have been proposed to detect such barriers. However, most applications of these methods require a relative large number of individuals or populations distributed in space, connected by vertices from Delaunay or Gabriel networks. Here we show, using both simulated and empirical data, a new application of geographically weighted regression (GWR) to detect such barriers, modeling the genetic variation as a "local" linear function of geographic coordinates (latitude and longitude). In the GWR, standard regression statistics, such as R(2) and slopes, are estimated for each sampling unit and thus are mapped. Peaks in these local statistics are then expected close to the barriers if genetic discontinuities exist, capturing a higher rate of population differentiation among neighboring populations. Isolation-by-Distance simulations on a longitudinally warped lattice revealed that higher local slopes from GWR coincide with the barrier detected with Monmonier algorithm. Even with a relatively small effect of the barrier, the power of local GWR in detecting the east-west barriers was higher than 95 %. We also analyzed empirical data of genetic differentiation among tree populations of Dipteryx alata and Eugenia dysenterica Brazilian Cerrado. GWR was applied to the principal coordinate of the pairwise FST matrix based on microsatellite loci. In both simulated and empirical data, the GWR results were consistent with discontinuities detected by Monmonier algorithm, as well as with previous explanations for the spatial patterns of genetic differentiation for the two species. Our analyses reveal how this new application of GWR can viewed as a generalized Wombling in a continuous space and be a useful approach to detect barriers and discontinuities to gene flow.

摘要

基因流障碍在种群结构形成中起着重要作用,尤其是在人类改造的景观中,并且已经提出了几种方法来检测此类障碍。然而,这些方法的大多数应用需要相对大量分布在空间中的个体或种群,通过德劳内(Delaunay)或加布里埃尔(Gabriel)网络的顶点相连。在这里,我们使用模拟数据和实证数据展示了地理加权回归(GWR)在检测此类障碍方面的一种新应用,将遗传变异建模为地理坐标(纬度和经度)的“局部”线性函数。在地理加权回归中,针对每个采样单元估计标准回归统计量,如R²和斜率,然后进行映射。如果存在遗传间断,那么这些局部统计量的峰值预计会靠近障碍,从而捕捉相邻种群间更高的种群分化率。在纵向扭曲晶格上进行的距离隔离模拟表明,地理加权回归得到的较高局部斜率与用蒙莫尼尔算法检测到的障碍相吻合。即使障碍的影响相对较小,局部地理加权回归检测东西向障碍的能力也高于95%。我们还分析了巴西塞拉多地区翅荚香脂树和痢疾番樱桃树种群间遗传分化的实证数据。基于微卫星位点,将地理加权回归应用于成对FST矩阵的主坐标。在模拟数据和实证数据中,地理加权回归的结果都与蒙莫尼尔算法检测到的间断一致,也与之前对这两个物种遗传分化空间模式的解释一致。我们的分析揭示了地理加权回归的这种新应用如何可以被视为连续空间中的广义沃姆布林(Wombling),并且是检测基因流障碍和间断的一种有用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验