Yang Tianhong, Fang Lingling, Rimando Agnes M, Sobolev Victor, Mockaitis Keithanne, Medina-Bolivar Fabricio
Arkansas Biosciences Institute (T.Y., L.F., F.M.-B.), Molecular Biosciences Graduate Program (T.Y.), and Department of Biological Sciences (L.F., F.M.-B.), Arkansas State University, Jonesboro, Arkansas 72467;Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, Mississippi 38677 (A.M.R.);National Peanut Research Laboratory, Dawson, Georgia 39842 (V.S.); andPervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47408 (K.M.).
Arkansas Biosciences Institute (T.Y., L.F., F.M.-B.), Molecular Biosciences Graduate Program (T.Y.), and Department of Biological Sciences (L.F., F.M.-B.), Arkansas State University, Jonesboro, Arkansas 72467;Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, Mississippi 38677 (A.M.R.);National Peanut Research Laboratory, Dawson, Georgia 39842 (V.S.); andPervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47408 (K.M.)
Plant Physiol. 2016 Aug;171(4):2483-98. doi: 10.1104/pp.16.00610. Epub 2016 Jun 29.
Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases.
一些豆科植物中合成的异戊烯基化茋类化合物具有植物病原体防御特性和药理活性,对人类健康可能有益。尽管它们很重要,但这些化合物的生物合成途径仍有待阐明。花生(Arachis hypogaea)毛状根培养物在用诱导剂处理后会产生多种异戊烯基化茋类化合物。使用质体和胞质类异戊二烯生物合成途径的代谢抑制剂,我们证明了异戊烯基化茋类化合物上的异戊烯基部分源自质体途径。据我们所知,我们首次进一步表征了花生毛状根微粒体部分的一种膜结合茋类化合物特异性异戊烯基转移酶活性。这种源自微粒体部分的白藜芦醇4 - 二甲基烯丙基转移酶利用3,3 - 二甲基烯丙基焦磷酸作为异戊烯基供体,将白藜芦醇异戊烯基化形成花生四烯酸 - 2。它还将松脂醇异戊烯基化形成奇立卡宁A,将白藜芦醇单甲醚异戊烯基化形成花生四烯酸 - 5,据我们所知,花生四烯酸 - 5是本研究中首次鉴定的一种异戊烯基化茋类化合物。这种异戊烯基转移酶对茋类化合物表现出严格的底物特异性,即使它与黄酮类化合物特异性异戊烯基转移酶有几个共同特征,也不会将黄烷酮、黄酮或异黄酮骨架异戊烯基化。