Suppr超能文献

将归一化与跨皮质区域的神经元群体联系起来。

Relating normalization to neuronal populations across cortical areas.

作者信息

Ruff Douglas A, Alberts Joshua J, Cohen Marlene R

机构信息

Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania

Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

J Neurophysiol. 2016 Sep 1;116(3):1375-86. doi: 10.1152/jn.00017.2016. Epub 2016 Jun 29.

Abstract

Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties.

摘要

归一化通过对神经元对多种刺激的反应进行除法缩放,被认为是许多感觉、运动和认知过程的基础。在每一项对其进行研究的实验中,在相同条件下于同一脑区测量的神经元都表现出一定范围的归一化,从被非偏好刺激抑制(强归一化)到对刺激组合的相加反应(无归一化)。据推测,归一化源于神经元群体之间的相互作用,无论是在同一脑区还是不同脑区,但目前的归一化模型并非基于机制,且侧重于试验平均反应。为了深入了解归一化背后的机制,我们研究了表现出不同程度归一化的神经元之间的相互作用。当恒河猴观看叠加的漂移光栅时,我们记录了三个皮质区域中多个神经元的活动。我们发现,与归一化程度较弱的神经元相比,表现出强归一化的神经元与同一皮质区域内其他神经元的逐次试验变异性更小,而与其他皮质区域的神经元变异性更大。此外,归一化的皮质组织并非随机:记录在附近电极上的神经元往往表现出相似程度的归一化。我们的研究结果共同表明,归一化反映了神经元在其局部网络中的作用,而归一化等调节因素具有与感觉调谐特性典型的地形组织相同的特征。

相似文献

1
Relating normalization to neuronal populations across cortical areas.
J Neurophysiol. 2016 Sep 1;116(3):1375-86. doi: 10.1152/jn.00017.2016. Epub 2016 Jun 29.
2
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
3
Attention Increases Spike Count Correlations between Visual Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7523-34. doi: 10.1523/JNEUROSCI.0610-16.2016.
4
Relating Divisive Normalization to Neuronal Response Variability.
J Neurosci. 2019 Sep 11;39(37):7344-7356. doi: 10.1523/JNEUROSCI.0126-19.2019. Epub 2019 Aug 6.
5
Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli.
Nat Neurosci. 2005 May;8(5):591-3. doi: 10.1038/nn1446. Epub 2005 Apr 17.
6
Temporal Contingencies Determine Whether Adaptation Strengthens or Weakens Normalization.
J Neurosci. 2018 Nov 21;38(47):10129-10142. doi: 10.1523/JNEUROSCI.1131-18.2018. Epub 2018 Oct 5.
7
Testing the assumptions underlying fMRI adaptation using intracortical recordings in area MT.
Cortex. 2016 Jul;80:21-34. doi: 10.1016/j.cortex.2015.12.011. Epub 2016 Jan 19.
8
Neuronal adaptation to visual motion in area MT of the macaque.
Neuron. 2003 Aug 14;39(4):681-91. doi: 10.1016/s0896-6273(03)00438-0.
9
Divisive Normalization Predicts Adaptation-Induced Response Changes in Macaque Inferior Temporal Cortex.
J Neurosci. 2016 Jun 1;36(22):6116-28. doi: 10.1523/JNEUROSCI.2011-15.2016.
10
Adaptation changes the direction tuning of macaque MT neurons.
Nat Neurosci. 2004 Jul;7(7):764-72. doi: 10.1038/nn1267. Epub 2004 Jun 13.

引用本文的文献

1
Guided by Noise: Correlated Variability Channels Task-Relevant Information in Sensory Neurons.
bioRxiv. 2025 Aug 13:2025.08.13.669902. doi: 10.1101/2025.08.13.669902.
2
Neuronal normalization in monkey MT is an intensity-weighted average.
bioRxiv. 2025 Jul 25:2025.07.21.665985. doi: 10.1101/2025.07.21.665985.
3
Neuronal heterogeneity of normalization strength in a circuit model.
bioRxiv. 2024 Nov 22:2024.11.22.624903. doi: 10.1101/2024.11.22.624903.
4
Spike Count Analysis for MultiPlexing Inference (SCAMPI).
bioRxiv. 2024 Sep 15:2024.09.14.613077. doi: 10.1101/2024.09.14.613077.
6
Coordinated multiplexing of information about separate objects in visual cortex.
Elife. 2022 Nov 29;11:e76452. doi: 10.7554/eLife.76452.
7
Feature representation under crowding in macaque V1 and V4 neuronal populations.
Curr Biol. 2022 Dec 5;32(23):5126-5137.e3. doi: 10.1016/j.cub.2022.10.049. Epub 2022 Nov 14.
8
Priority coding in the visual system.
Nat Rev Neurosci. 2022 Jun;23(6):376-388. doi: 10.1038/s41583-022-00582-9. Epub 2022 Apr 11.
9
Dynamic divisive normalization circuits explain and predict change detection in monkey area MT.
PLoS Comput Biol. 2021 Nov 12;17(11):e1009595. doi: 10.1371/journal.pcbi.1009595. eCollection 2021 Nov.
10
Attention improves information flow between neuronal populations without changing the communication subspace.
Curr Biol. 2021 Dec 6;31(23):5299-5313.e4. doi: 10.1016/j.cub.2021.09.076. Epub 2021 Oct 25.

本文引用的文献

1
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
2
Attention Increases Spike Count Correlations between Visual Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7523-34. doi: 10.1523/JNEUROSCI.0610-16.2016.
3
Diverse coupling of neurons to populations in sensory cortex.
Nature. 2015 May 28;521(7553):511-515. doi: 10.1038/nature14273. Epub 2015 Apr 6.
4
Attention and normalization circuits in macaque V1.
Eur J Neurosci. 2015 Apr;41(7):949-64. doi: 10.1111/ejn.12857. Epub 2015 Mar 11.
6
Global cognitive factors modulate correlated response variability between V4 neurons.
J Neurosci. 2014 Dec 3;34(49):16408-16. doi: 10.1523/JNEUROSCI.2750-14.2014.
7
Attention can either increase or decrease spike count correlations in visual cortex.
Nat Neurosci. 2014 Nov;17(11):1591-7. doi: 10.1038/nn.3835. Epub 2014 Oct 12.
8
Correlations in V1 are reduced by stimulation outside the receptive field.
J Neurosci. 2014 Aug 20;34(34):11222-7. doi: 10.1523/JNEUROSCI.0762-14.2014.
9
Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4.
Nat Neurosci. 2014 Jul;17(7):1003-11. doi: 10.1038/nn.3742. Epub 2014 Jun 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验