Suppr超能文献

动态分裂归一化电路解释并预测了猴子 MT 区的变化检测。

Dynamic divisive normalization circuits explain and predict change detection in monkey area MT.

机构信息

Computational Neurophysics Lab, Institute for Theoretical Physics, University of Bremen, Bremen, Germany.

Brain Research Institute, University of Bremen, Bremen, Germany.

出版信息

PLoS Comput Biol. 2021 Nov 12;17(11):e1009595. doi: 10.1371/journal.pcbi.1009595. eCollection 2021 Nov.

Abstract

Sudden changes in visual scenes often indicate important events for behavior. For their quick and reliable detection, the brain must be capable to process these changes as independently as possible from its current activation state. In motion-selective area MT, neurons respond to instantaneous speed changes with pronounced transients, often far exceeding the expected response as derived from their speed tuning profile. We here show that this complex, non-linear behavior emerges from the combined temporal dynamics of excitation and divisive inhibition, and provide a comprehensive mathematical analysis. A central prediction derived from this investigation is that attention increases the steepness of the transient response irrespective of the activation state prior to a stimulus change, and irrespective of the sign of the change (i.e. irrespective of whether the stimulus is accelerating or decelerating). Extracellular recordings of attention-dependent representation of both speed increments and decrements confirmed this prediction and suggest that improved change detection derives from basic computations in a canonical cortical circuitry.

摘要

视觉场景的突然变化通常表明行为的重要事件。为了快速可靠地检测到这些变化,大脑必须能够尽可能独立于其当前的激活状态来处理这些变化。在运动选择性区域 MT 中,神经元会对瞬间的速度变化做出明显的瞬态反应,其反应幅度常常远远超过根据其速度调谐曲线所预测的反应幅度。我们在这里表明,这种复杂的非线性行为源自兴奋和抑制性抑制的联合时间动态,并提供了全面的数学分析。该研究得出的一个重要预测是,无论刺激变化前的激活状态如何,也无论变化的符号(即刺激是加速还是减速)如何,注意力都会增加瞬态反应的陡峭度。对注意依赖性的速度递增和递减表示的细胞外记录证实了这一预测,并表明改善的变化检测源自经典皮质电路中的基本计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcfc/8612546/377037d14920/pcbi.1009595.g001.jpg

相似文献

1
Dynamic divisive normalization circuits explain and predict change detection in monkey area MT.
PLoS Comput Biol. 2021 Nov 12;17(11):e1009595. doi: 10.1371/journal.pcbi.1009595. eCollection 2021 Nov.
2
Recent history of stimulus speeds affects the speed tuning of neurons in area MT.
J Neurosci. 2007 Oct 10;27(41):11009-18. doi: 10.1523/JNEUROSCI.3165-07.2007.
3
Spatial Arrangement Drastically Changes the Neural Representation of Multiple Visual Stimuli That Compete in More Than One Feature Domain.
J Neurosci. 2020 Feb 26;40(9):1834-1848. doi: 10.1523/JNEUROSCI.1950-19.2020. Epub 2020 Jan 14.
4
The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex.
Proc R Soc Lond B Biol Sci. 1980 Feb 29;207(1167):239-48. doi: 10.1098/rspb.1980.0022.
5
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
6
Dynamic population codes of multiplexed stimulus features in primate area MT.
J Neurophysiol. 2017 Jul 1;118(1):203-218. doi: 10.1152/jn.00954.2016. Epub 2017 Apr 5.
7
A Model of Binocular Motion Integration in MT Neurons.
J Neurosci. 2016 Jun 15;36(24):6563-82. doi: 10.1523/JNEUROSCI.3213-15.2016.
8
Gamma-band synchronization in visual cortex predicts speed of change detection.
Nature. 2006 Feb 9;439(7077):733-6. doi: 10.1038/nature04258. Epub 2005 Dec 21.
9
Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance.
J Neurophysiol. 2015 Feb 1;113(3):890-903. doi: 10.1152/jn.00335.2014. Epub 2014 Nov 12.

本文引用的文献

1
A dynamic normalization model of temporal attention.
Nat Hum Behav. 2021 Dec;5(12):1674-1685. doi: 10.1038/s41562-021-01129-1. Epub 2021 Jun 17.
2
A recurrent circuit implements normalization, simulating the dynamics of V1 activity.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22494-22505. doi: 10.1073/pnas.2005417117. Epub 2020 Aug 25.
3
Recurrent network dynamics reconciles visual motion segmentation and integration.
Sci Rep. 2017 Sep 12;7(1):11270. doi: 10.1038/s41598-017-11373-z.
4
Task-specific, dimension-based attentional shaping of motion processing in monkey area MT.
J Neurophysiol. 2017 Sep 1;118(3):1542-1555. doi: 10.1152/jn.00183.2017. Epub 2017 Jun 28.
5
Neuronal Mechanisms of Visual Attention.
Annu Rev Vis Sci. 2015 Nov 24;1:373-391. doi: 10.1146/annurev-vision-082114-035431.
6
Relating normalization to neuronal populations across cortical areas.
J Neurophysiol. 2016 Sep 1;116(3):1375-86. doi: 10.1152/jn.00017.2016. Epub 2016 Jun 29.
9
A mechanistic cortical microcircuit of attention for amplification, normalization and suppression.
Vision Res. 2015 Nov;116(Pt B):241-57. doi: 10.1016/j.visres.2015.04.004. Epub 2015 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验