Gertz E Michael, Chowdhury Salim Akhter, Lee Woei-Jyh, Wangsa Darawalee, Heselmeyer-Haddad Kerstin, Ried Thomas, Schwartz Russell, Schäffer Alejandro A
Computational Biology Branch, National Center for Biotechnology Information, U.S. National Institutes of Health, Bethesda, MD, United States of America.
Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, United States of America.
PLoS One. 2016 Jun 30;11(6):e0158569. doi: 10.1371/journal.pone.0158569. eCollection 2016.
Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.
荧光原位杂交(FISH)技术的进展使得检测实体瘤数百个细胞中的多个拷贝数变化成为可能。使用FISH、测序和其他技术的研究揭示了肿瘤内存在显著的异质性。肿瘤中亚克隆的进化可以用系统发育树来建模。肿瘤通常含有非整倍体或多倍体细胞群。使用FISH探针估计倍性变化可以指导构建模拟倍性变化和单个基因拷贝数变异的树。我们展示了FISHtrees 3.0,它实现了一种基于混合整数线性规划(MILP)的基于倍性的树构建方法。FISHtrees中基于倍性的建模包括一个新的公式,用于将单个基因变化的树合并到模拟多个基因和倍性变化的树的问题中。当从每个患者收集多个样本时,样本随时间或肿瘤区域而变化,评估样本间肿瘤进展的相似性是有用的。因此,我们在FISHtrees 3.0中进一步实现了一种为多个样本构建共识图的新方法。我们在模拟数据、来自宫颈原发性和转移性肿瘤配对病例的FISH数据以及乳腺导管原位癌(DCIS)和浸润性导管癌(IDC)配对数据上验证了FISHtrees 3.0。对模拟数据的测试表明,相对于先前的无倍性方法,基于倍性的方法具有更高的准确性。对真实数据的测试进一步证明了这些方法为肿瘤进展过程提供的新见解。DCIS样本的树比配对的IDC样本的树明显不那么复杂。共识图显示两组中大多数配对样本之间存在显著差异。DCIS和IDC树之间的低一致性可能有助于解释难以找到预测哪些DCIS病例最有可能进展为IDC的生物标志物的原因。FISHtrees软件可从ftp://ftp.ncbi.nih.gov/pub/FISHtrees获取。