Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Bioinformatics. 2021 Dec 11;37(24):4704-4711. doi: 10.1093/bioinformatics/btab504.
Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate.
In this work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating such information in an integer linear programming framework, we demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data.
Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_deconvolution.
Supplementary data are available at Bioinformatics online.
计算癌症克隆进化的重建已成为理解肿瘤如何起始和发展以及该过程在患者间如何变化的重要工具。然而,该领域仍面临应用系统发生方法于癌症的特殊挑战,例如拷贝数改变(CNA)和结构变异事件在肿瘤进化中的普遍性和重要性,这些事件很难通过目前的测序方法准确地进行分析,以至于后续通过系统发生推断算法进行的重建是准确的。
在这项工作中,我们开发了计算方法,将测序与多重间期荧光原位杂交相结合,利用每种技术的互补优势,在推断考虑全基因组范围内的局灶性变化和非整倍性的准确克隆 CNA 进化模型方面,来弥补彼此的不足。通过在整数线性规划框架中整合这些信息,我们在模拟数据上证明,整合 FISH 数据可显著提高从批量测序数据中推断局灶性 CNA 和克隆进化中ploidy 变化的准确性。对同时具有 FISH、批量测序和单细胞测序数据的真实胶质母细胞瘤数据的分析证实了 FISH 与批量和可选的单细胞测序数据相结合,可增强准确重建克隆拷贝数进化的能力。
源代码可在 Github 上获取,网址为 https://github.com/CMUSchwartzLab/FISH_deconvolution。
补充数据可在《生物信息学》在线获取。