Suppr超能文献

内聚能与焓:复杂性、混淆与修正

Cohesive Energies and Enthalpies: Complexities, Confusions, and Corrections.

作者信息

Glasser Leslie, Sheppard Drew A

机构信息

Nanochemistry Research Institute, Department of Chemistry, Curtin University , GPO Box U1987, Perth, Western Australia 6845, Australia.

Hydrogen Storage Research Group, Fuels and Energy Technology Institute, Department of Physics and Astronomy, Curtin University , GPO Box U1987, Perth, Western Australia 6845, Australia.

出版信息

Inorg Chem. 2016 Jul 18;55(14):7103-10. doi: 10.1021/acs.inorgchem.6b01056. Epub 2016 Jun 30.

Abstract

The cohesive or atomization energy of an ionic solid is the energy required to decompose the solid into its constituent independent gaseous atoms at 0 K, while its lattice energy, Upot, is the energy required to decompose the solid into its constituent independent gaseous ions at 0 K. These energies may be converted into enthalpies at a given temperature by the addition of the small energies corresponding to integration of the heat capacity of each of the constituents. While cohesive energies/enthalpies are readily calculated by thermodynamic summing of the formation energies/enthalpies of the constituents, they are also currently intensively studied by computational procedures for the resulting insight on the interactions within the solid. In supporting confirmation of their computational results, authors generally quote "experimental" cohesive energies which are, in fact, simply the thermodynamic sums. However, these "experimental" cohesive energies are quoted in many different units, atom-based or calorimetric, and on different bases such as per atom, per formula unit, per oxide ion, and so forth. This makes comparisons among materials very awkward. Additionally, some of the quoted values are, in fact, lattice energies which are distinctly different from cohesive energies. We list large numbers of reported cohesive energies for binary halides, chalcogenides, pnictogenides, and Laves phase compounds which we bring to the same basis, and identify a number as incorrectly reported lattice energies. We also propose that cohesive energies of higher-order ionic solids may also be estimated as thermodynamic enthalpy sums.

摘要

离子固体的内聚能或原子化能是在0 K时将固体分解为其组成的独立气态原子所需的能量,而其晶格能Upot是在0 K时将固体分解为其组成的独立气态离子所需的能量。通过加上与每种成分的热容积分相对应的小能量,可以将这些能量在给定温度下转换为焓。虽然内聚能/焓可以通过对成分的生成能/焓进行热力学求和轻松计算,但目前也通过计算程序对其进行深入研究,以便深入了解固体内的相互作用。为了支持对其计算结果的确认,作者通常引用“实验”内聚能,而实际上这些内聚能仅仅是热力学总和。然而,这些“实验”内聚能以许多不同的单位引用,基于原子或量热法,并且基于不同的基准,例如每原子、每化学式单元、每氧离子等等。这使得材料之间的比较非常棘手。此外,一些引用的值实际上是晶格能,与内聚能明显不同。我们列出了大量二元卤化物、硫族化物、氮族化物和拉夫斯相化合物的报道内聚能,并将它们统一到相同的基准上,同时识别出一些错误报道为晶格能的数值。我们还提出,高阶离子固体的内聚能也可以估计为热力学焓总和。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验