The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
Pharm Res. 2024 Jan;41(1):113-127. doi: 10.1007/s11095-023-03618-6. Epub 2023 Oct 13.
The propose is to investigate the reasons for the insolubility of Form III in water and to explore the mechanism of the hydration process of Form III.
The conformational and cohesive energies of Form III and Form H1 were calculated using Gaussian 16 and Crystal Explorer 17. Gaussian 16 and Multiwfn 3.8 was used to calculate the molecular surface electrostatic potential of Form III and Form H1 and to calculate the energies of the stronger intermolecular interactions in the crystal structure. The behaviors of Form III in water were simulated using Gromacs 2020.6. Finally, the hydration process from Form III to Form H1 was monitored in situ using Raman spectroscopy.
The conformational energies of Form III and H1 are almost the same. The cohesion energy of Form H1 is much larger than that of Form III because both number of hydrogen bonds and van der Waals interactions are higher in the Form H1. During the simulation, the supercell of APZ form a supramolecular cluster. Several molecules manually dismantled from the cluster spontaneously combine to form new molecular clusters. Both increases in temperature and external energy input accelerate the hydration process.
More hydrogen bonds and strong van der Waals interactions in Form H1 lead to a greater stability. The overall decrease in polarity and the strong binding effect on APZ molecule clusters due to intermolecular interactions lead to the water insolubility of Form III. The hydration process from Form III to Form H1 follows a novel, dandelion sowing-like hydration mechanism.
本研究旨在探讨 III 型无定形物在水中的不溶性原因,并探索其水合过程的机制。
使用 Gaussian 16 和 Crystal Explorer 17 计算了 III 型和 H1 型的构象和内聚能。使用 Gaussian 16 和 Multiwfn 3.8 计算了 III 型和 H1 型的分子表面静电势,并计算了晶体结构中较强的分子间相互作用的能量。使用 Gromacs 2020.6 模拟了 III 型在水中的行为。最后,使用拉曼光谱原位监测了从 III 型到 H1 型的水合过程。
III 型和 H1 型的构象能几乎相同。H1 型的内聚能远大于 III 型,因为 H1 型的氢键和范德华相互作用数量都更高。在模拟过程中,APZ 的超胞形成超分子簇。从簇中手动拆卸的几个分子自发结合形成新的分子簇。升高温度和外部能量输入都加速了水合过程。
H1 型中更多的氢键和强范德华相互作用导致其稳定性更高。由于分子间相互作用,III 型极性整体降低,对 APZ 分子簇的结合作用增强,导致其在水中不溶。III 型到 H1 型的水合过程遵循一种新颖的、蒲公英播种样的水合机制。