Lee Eunsin, Meyer Juergen, Sandison George
Department of Radiation Oncology, The University of Washington, Seattle, WA 98195, USA.
Phys Med Biol. 2016 Jul 21;61(14):5378-89. doi: 10.1088/0031-9155/61/14/5378. Epub 2016 Jun 30.
Preclinical and translational research is an imperative to improve the efficacy of proton radiotherapy. We present a feasible and practical method to produce spatially-modulated proton beams for cellular and small animal research for clinical and research facilities. The University of Washington (UW) 50.5 MeV proton research beamline hosting a brass collimation system was modeled using Monte Carlo simulations. This collimator consisted of an array of 2 cm long slits to cover an area of 2 × 2 cm(2). To evaluate the collimator design effects on dose rate, valley dose and the peak-to-valley dose ratios (PVDR) the following parameters were varied; slit width (0.1-1.0 mm), peak center-to-center distance (1-3 mm), collimator thickness (1-7 cm) and collimator location along the beam axis. Several combinations of slit widths and 1 mm spacing achieved uniform dose at the Bragg peak while maintaining spatial modulation on the beam entrance. A more detailed analysis was carried out for the case of a slit width of 0.3 mm, peak center-to-center distance of 1 mm, a collimator thickness of 5 cm and with the collimator flush against the water phantom. The dose rate at 5 mm depth dropped relative to an open field by a factor of 12 and produced a PVDR of 10.1. Technical realization of proton mini-beams for radiobiology small animal research is demonstrated to be feasible. It is possible to obtain uniform dose at depth while maintaining reasonable modulation at shallower depths near the beam entrance. While collimator design is important the collimator location has a strong influence on the entrance region PVDRs and on dose rate. These findings are being used to manufacture a collimator for installation on the UW cyclotron proton beam nozzle. This collimator will enable comparative studies on the radiobiological efficacy of x-rays and proton beams.
临床前和转化研究对于提高质子放疗的疗效至关重要。我们提出了一种可行且实用的方法,用于为临床和研究机构的细胞及小动物研究生成空间调制质子束。使用蒙特卡罗模拟对华盛顿大学(UW)50.5 MeV质子研究束线及其黄铜准直系统进行了建模。该准直器由一系列2厘米长的狭缝组成,覆盖面积为2×2平方厘米。为了评估准直器设计对剂量率、谷值剂量和峰谷剂量比(PVDR)的影响,对以下参数进行了变化;狭缝宽度(0.1 - 1.0毫米)、峰中心距(1 - 3毫米)、准直器厚度(1 - 7厘米)以及准直器沿束轴的位置。狭缝宽度和1毫米间距的几种组合在布拉格峰处实现了均匀剂量,同时在束入口处保持了空间调制。对于狭缝宽度为0.3毫米、峰中心距为1毫米、准直器厚度为5厘米且准直器与水体模齐平的情况进行了更详细的分析。5毫米深度处的剂量率相对于开放野下降了12倍,产生的PVDR为10.1。质子微束用于放射生物学小动物研究的技术实现被证明是可行的。可以在深度处获得均匀剂量,同时在束入口附近较浅深度处保持合理的调制。虽然准直器设计很重要,但准直器位置对入口区域的PVDR和剂量率有很大影响。这些发现正被用于制造一个准直器,以安装在UW回旋加速器质子束喷口上。该准直器将能够对X射线和质子束的放射生物学疗效进行比较研究。