Suppr超能文献

癌症治疗中的脂质基药物递送系统:现状与未来展望

Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come.

作者信息

Yingchoncharoen Phatsapong, Kalinowski Danuta S, Richardson Des R

机构信息

Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia.

Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia

出版信息

Pharmacol Rev. 2016 Jul;68(3):701-87. doi: 10.1124/pr.115.012070.

Abstract

Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles.

摘要

癌症是世界上许多国家的主要死因。然而,目前针对多种癌症的标准治疗方法效果并不理想。首先,大多数癌症治疗方法缺乏特异性,这意味着这些治疗方法会同时影响癌细胞及其正常对应细胞。其次,许多抗癌药物具有高毒性,因此限制了它们在治疗中的应用。第三,一些细胞毒性化疗药物具有高度疏水性,这限制了它们在癌症治疗中的效用。最后,许多化疗药物的半衰期很短,这降低了它们的疗效。由于这些缺陷,许多当前的治疗方法会导致副作用、患者不依从以及给药困难给患者带来不便。然而,纳米技术的应用导致了有效的纳米级药物递送系统的发展,通常称为纳米颗粒。在这些递送系统中,基于脂质的纳米颗粒,特别是脂质体,已被证明在以下方面非常有效:1)提高癌症化疗药物的选择性;2)降低抗癌药物对正常组织的细胞毒性,从而减少其毒副作用;3)增加疏水性药物的溶解度;4)提供药物的延长和控释。这篇综述将讨论基于脂质的纳米颗粒研究的现状,包括用于癌症治疗的脂质体的发展、肿瘤靶向的不同策略、各种市售抗癌药物的脂质体制剂、用于癌症治疗的脂质体技术的最新进展以及下一代基于脂质的纳米颗粒。

相似文献

1
Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come.
Pharmacol Rev. 2016 Jul;68(3):701-87. doi: 10.1124/pr.115.012070.
2
Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting.
J Control Release. 2021 Dec 10;340:48-59. doi: 10.1016/j.jconrel.2021.10.025. Epub 2021 Oct 23.
3
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
Eur J Pharm Biopharm. 2015 Jun;93:52-79. doi: 10.1016/j.ejpb.2015.03.018. Epub 2015 Mar 23.
4
Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles.
Drug Metab Pers Ther. 2019 Feb 1;34(1):dmpt-2018-0032. doi: 10.1515/dmpt-2018-0032.
5
Liposomes a vesicular nanocarrier: potential advancements in cancer chemotherapy.
Crit Rev Ther Drug Carrier Syst. 2012;29(5):355-419. doi: 10.1615/critrevtherdrugcarriersyst.v29.i5.10.
6
Recent advances in liposome formulations for breast cancer therapeutics.
Cell Mol Life Sci. 2021 Jul;78(13):5225-5243. doi: 10.1007/s00018-021-03850-6. Epub 2021 May 11.
7
Liposomal cancer therapy: exploiting tumor characteristics.
Expert Opin Drug Deliv. 2010 Feb;7(2):225-43. doi: 10.1517/17425240903427940.
8
Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer.
Trends Pharmacol Sci. 2009 Nov;30(11):592-9. doi: 10.1016/j.tips.2009.08.004.
9
10
Lipid-based drug delivery systems for cancer treatment.
Curr Drug Targets. 2011 Jul 1;12(8):1151-65. doi: 10.2174/138945011795906570.

引用本文的文献

1
Innovative nanocarriers: Synthetic and biomimetic strategies for enhanced drug delivery.
Mater Today Bio. 2025 Aug 8;34:102180. doi: 10.1016/j.mtbio.2025.102180. eCollection 2025 Oct.
2
Strategic advances in liposomes technology: translational paradigm in transdermal delivery for skin dermatosis.
J Nanobiotechnology. 2025 Aug 21;23(1):576. doi: 10.1186/s12951-025-03660-z.
3
Lipid nanoparticles: a promising tool for nucleic acid delivery in cancer immunotherapy.
Med Oncol. 2025 Aug 6;42(9):409. doi: 10.1007/s12032-025-02939-3.
4
Advancing cancer therapy: Nanomaterial-based encapsulation strategies for enhanced delivery and efficacy of curcumin.
Mater Today Bio. 2025 Jun 9;33:101963. doi: 10.1016/j.mtbio.2025.101963. eCollection 2025 Aug.
6
Effect of cucurbit[7]uril on DPPC-containing liposomes: Interactions with the lipid bilayer.
Sci Prog. 2025 Apr-Jun;108(2):368504251334687. doi: 10.1177/00368504251334687. Epub 2025 Apr 17.
7
Nanotechnology Innovations in Myocardial Infarction: Diagnosis, Treatment and the Way Forward.
J Cardiovasc Transl Res. 2025 Apr 9. doi: 10.1007/s12265-025-10614-1.
9
Innate immunity-modulating nanobiomaterials for controlling inflammation resolution.
Matter. 2024 Nov 6;7(11):3811-3844. doi: 10.1016/j.matt.2024.09.016.
10
Nanotechnology in Imatinib delivery: advancing cancer treatment through innovative nanoparticles.
Med Oncol. 2025 Mar 18;42(4):116. doi: 10.1007/s12032-025-02660-1.

本文引用的文献

1
Equivalency challenge: Evaluation of Lipodox® as the generic equivalent for Doxil® in a human ovarian cancer orthotropic mouse model.
Gynecol Oncol. 2016 May;141(2):357-363. doi: 10.1016/j.ygyno.2016.02.033. Epub 2016 Mar 8.
2
Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells.
J Control Release. 2015 Dec 28;220(Pt B):727-37. doi: 10.1016/j.jconrel.2015.09.031. Epub 2015 Sep 24.
3
Inhibition of NF-κB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy.
Int J Mol Sci. 2015 Aug 21;16(8):19960-77. doi: 10.3390/ijms160819960.
4
Increased pressure alters plasma membrane dynamics and renders acute myeloid leukemia cells resistant to daunorubicin.
Haematologica. 2015 Oct;100(10):e406-8. doi: 10.3324/haematol.2015.129866. Epub 2015 Jul 16.
5
7
A study on liposomal encapsulation of a lipophilic prodrug of LHRH.
Pharm Dev Technol. 2016 Sep;21(6):664-71. doi: 10.3109/10837450.2015.1041045. Epub 2015 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验