文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

推进癌症治疗:基于纳米材料的包封策略以增强姜黄素的递送及疗效

Advancing cancer therapy: Nanomaterial-based encapsulation strategies for enhanced delivery and efficacy of curcumin.

作者信息

Yan Yuxing, Sun Yanbo, Li Yingjie, Wang Zhenlong, Xue Li, Wang Fu

机构信息

Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.

Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

出版信息

Mater Today Bio. 2025 Jun 9;33:101963. doi: 10.1016/j.mtbio.2025.101963. eCollection 2025 Aug.


DOI:10.1016/j.mtbio.2025.101963
PMID:40575656
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12198038/
Abstract

Curcumin, a polyphenolic compound derived from , has gained significant attention as a potential anticancer agent due to its anti-inflammatory, antioxidant, and antitumor properties. Despite its therapeutic potential, the clinical application of curcumin is limited by its poor aqueous solubility, rapid metabolism, and limited bioavailability. To address these limitations, various nanomaterial-based encapsulation strategies have been developed, including polymeric nanoparticles, liposomes, solid lipid nanoparticles, micelles, dendrimers, and hybrid nanomaterials. These formulations aim to improve curcumin's solubility, stability, cellular uptake, and controlled release, thereby enhancing its targeted delivery to tumor sites. Such approaches not only reduce systemic toxicity but also improve therapeutic efficacy. Recent studies demonstrate that curcumin-loaded nanocarriers exhibit enhanced antitumor effects, selective cytotoxicity toward cancer cells, and minimized side effects. However, challenges such as achieving tissue specificity, evaluating potential toxicity, and the need for thorough clinical validation persist. Future research should prioritize the development of tissue-specific delivery systems, assess safety profiles, and ensure biocompatibility to optimize curcumin's clinical efficacy. This review provides an overview of the latest advancements in curcumin nanocapsules, critically comparing their advantages and limitations in cancer therapy.

摘要

姜黄素是一种从姜黄中提取的多酚类化合物,因其具有抗炎、抗氧化和抗肿瘤特性,作为一种潜在的抗癌药物受到了广泛关注。尽管姜黄素有治疗潜力,但其临床应用受到水溶性差、代谢快和生物利用度低的限制。为了解决这些限制,人们开发了各种基于纳米材料的包封策略,包括聚合物纳米颗粒、脂质体、固体脂质纳米颗粒、胶束、树枝状大分子和杂化纳米材料。这些制剂旨在提高姜黄素的溶解度、稳定性、细胞摄取和控释,从而增强其向肿瘤部位的靶向递送。这种方法不仅降低了全身毒性,还提高了治疗效果。最近的研究表明,负载姜黄素的纳米载体具有增强的抗肿瘤作用、对癌细胞的选择性细胞毒性以及最小化的副作用。然而,实现组织特异性、评估潜在毒性以及进行全面临床验证等挑战仍然存在。未来的研究应优先开发组织特异性递送系统,评估安全性,并确保生物相容性,以优化姜黄素的临床疗效。本综述概述了姜黄素纳米胶囊的最新进展,批判性地比较了它们在癌症治疗中的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/efaa9aba7029/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/2b9f678ed7d8/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/bad291501ace/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/9013721fdc0d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/8f735a2d3fd9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/b970ca43b115/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/f017264fee5b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/356bd1da5fb4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/eb1ad11db2a2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/c0e7782836f9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/a1b9c5f472f6/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/de19efa64570/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/15cbabc4c4c6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/7c5c87e2c503/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/19808ddc6ceb/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/3ff966def73c/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/8a640e78644b/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/c7e25ae36e9f/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/0e68cc1578e8/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/fdb317c86abf/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/da678ecb72fc/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/bcc45779551a/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/efaa9aba7029/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/2b9f678ed7d8/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/bad291501ace/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/9013721fdc0d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/8f735a2d3fd9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/b970ca43b115/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/f017264fee5b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/356bd1da5fb4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/eb1ad11db2a2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/c0e7782836f9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/a1b9c5f472f6/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/de19efa64570/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/15cbabc4c4c6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/7c5c87e2c503/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/19808ddc6ceb/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/3ff966def73c/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/8a640e78644b/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/c7e25ae36e9f/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/0e68cc1578e8/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/fdb317c86abf/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/da678ecb72fc/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/bcc45779551a/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75fd/12198038/efaa9aba7029/gr21.jpg

相似文献

[1]
Advancing cancer therapy: Nanomaterial-based encapsulation strategies for enhanced delivery and efficacy of curcumin.

Mater Today Bio. 2025-6-9

[2]
Trends in advanced oral drug delivery system for curcumin: A systematic review.

J Control Release. 2022-8

[3]
Preclinical studies of the antitumor effect of curcumin-loaded polymeric nanocapsules: A systematic review and meta-analysis.

Phytother Res. 2022-8

[4]
The effect of highly bioavailable forms of curcumin on lipoprotein(a) plasma levels: A systematic review and meta-analysis of randomized clinical studies.

Prostaglandins Other Lipid Mediat. 2025-6

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery.

Pharmaceutics. 2025-6-19

[8]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[10]
Self-Assembling Amphiphilic ABA Triblock Copolymers of Hyperbranched Polyglycerol with Poly(tetrahydrofuran) and Their Nanomicelles as Highly Efficient Solubilization and Delivery Systems of Curcumin.

Int J Mol Sci. 2025-6-19

引用本文的文献

[1]
Research progress of nano-based drug delivery systems based on stimuli-responsive materials for the treatment of lung diseases.

Front Bioeng Biotechnol. 2025-7-31

[2]
Therapeutic and diagnostic implications of exosomes as natural nanoparticles: a new paradigm in brain cancer disease management.

Front Med (Lausanne). 2025-7-21

本文引用的文献

[1]
Drug Interactions of Imperatorin and Curcumin on Macitentan in vitro and in vivo.

Drug Des Devel Ther. 2025-4-29

[2]
Insights into the pharmacokinetics, biodistribution, and oral toxicity of a polymeric benzimidazole - Curcumin nanocomplex with a multitarget anticancer potential.

Food Chem Toxicol. 2025-8

[3]
Recent Advances in Vitamin E TPGS-Based Organic Nanocarriers for Enhancing the Oral Bioavailability of Active Compounds: A Systematic Review.

Pharmaceutics. 2025-4-7

[4]
Transformative potential of plant-based nanoparticles in cancer diagnosis and treatment: bridging traditional medicine and modern therapy.

Naunyn Schmiedebergs Arch Pharmacol. 2025-4-16

[5]
Nanostructured Strategies for Melanoma Treatment-Part I: Design and Optimization of Curcumin-Loaded Micelles for Enhanced Anticancer Activity.

Pharmaceuticals (Basel). 2025-2-26

[6]
Development and optimization of curcumin-loaded solid lipid nanoparticles using Box-Behnken design and evaluation of its efficacy in modulating morphine-induced conditioned place preference: and studies.

J Drug Target. 2025-2-24

[7]
Nanoencapsulation enhanced the performance of β-carotene for ameliorating inflammation in patient-derived organoids.

Nanomedicine (Lond). 2025-4

[8]
Curcumin and Its Derivatives in Hepatology: Therapeutic Potential and Advances in Nanoparticle Formulations.

Cancers (Basel). 2025-2-1

[9]
Therapeutic potential and underlying mechanisms of phytoconstituents: emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis.

Naunyn Schmiedebergs Arch Pharmacol. 2025-1-29

[10]
The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities.

Biomolecules. 2025-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索