Mrugalla Florian, Kast Stefan M
Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund, Germany.
J Phys Condens Matter. 2016 Sep 1;28(34):344004. doi: 10.1088/0953-8984/28/34/344004. Epub 2016 Jul 1.
Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.
溶液中分子间的复合物形成是分子相互作用转化为功能系统的关键过程。这些过程由结合或缔合自由能控制,而结合或缔合自由能既取决于直接的分子相互作用,也取决于溶剂化作用。药物科学中经常涉及的一个设计目标是优化复合物伙伴的化学性质,即相对于化学结构的变化,使它们的结合自由能最小化。在此,我们证明,参考相互作用位点模型的溶质 - 溶质方程形式的液态理论能够高效地为此类任务提供所有必要信息。特别地,计算平均力势(PMF)的导数(PMF定义了复合物形成的自由能表面)相对于势能参数的导数,可以被视为在化学空间中定义一个朝向更好结合剂方向的手段。我们在碱金属离子与水溶液中的冠醚18 - 冠 - 6结合的基准案例中阐述了该方法。为了检验基础溶质 - 溶质理论的有效性,我们首先比较了通过不同方法计算得到的PMF,包括作为参考的显式自由能分子动力学模拟。基于自由能导数对最佳结合离子半径的预测,随后被证明对于不同的离子参数集能产生一致的结果,并且与早期的、成本高出几个数量级的显式模拟结果相比表现良好。因此,这项原理验证研究证明了液态理论在分子设计问题中的潜力。