Gladrow J, Fakhri N, MacKintosh F C, Schmidt C F, Broedersz C P
Third Institute of Physics, Georg August University, 37077 Göttingen, Germany.
Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett. 2016 Jun 17;116(24):248301. doi: 10.1103/PhysRevLett.116.248301.
Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.
肌球蛋白运动蛋白驱动细胞肌动蛋白细胞骨架中剧烈的稳态波动。内源性嵌入的半柔性细丝(如微管)或添加的细丝(如单壁碳纳米管)被用作新型工具,以无创方式追踪此类生物聚合物网络中的平衡和非平衡波动。在此,我们通过分析计算了在粘弹性环境中,由运动活性驱动而偏离平衡的半柔性探针细丝的形状波动。探针细丝的横向弯曲波动可分解为动态正常模式。我们发现,在非平衡驱动下,这些模式不再独立演化。这种有效的模式耦合导致构象相空间中出现非零循环电流,这反映了对细致平衡的违反。我们给出了与这些电流相关的特征频率的预测,并研究了运动活性的时间特征如何决定模式相关性,我们发现这与最近关于嵌入细胞骨架网络中的微管的实验结果一致。