Li Junang, Horowitz Jordan M, Gingrich Todd R, Fakhri Nikta
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
Nat Commun. 2019 Apr 10;10(1):1666. doi: 10.1038/s41467-019-09631-x.
Systems coupled to multiple thermodynamic reservoirs can exhibit nonequilibrium dynamics, breaking detailed balance to generate currents. To power these currents, the entropy of the reservoirs increases. The rate of entropy production, or dissipation, is a measure of the statistical irreversibility of the nonequilibrium process. By measuring this irreversibility in several biological systems, recent experiments have detected that particular systems are not in equilibrium. Here we discuss three strategies to replace binary classification (equilibrium versus nonequilibrium) with a quantification of the entropy production rate. To illustrate, we generate time-series data for the evolution of an analytically tractable bead-spring model. Probability currents can be inferred and utilized to indirectly quantify the entropy production rate, but this approach requires prohibitive amounts of data in high-dimensional systems. This curse of dimensionality can be partially mitigated by using the thermodynamic uncertainty relation to bound the entropy production rate using statistical fluctuations in the probability currents.
与多个热力学库耦合的系统可以展现出非平衡动力学,打破细致平衡以产生电流。为了驱动这些电流,库的熵会增加。熵产生率或耗散率是衡量非平衡过程统计不可逆性的一个指标。通过在几个生物系统中测量这种不可逆性,最近的实验已经检测到特定系统并非处于平衡态。在此,我们讨论三种策略,用熵产生率的量化来取代二元分类(平衡态与非平衡态)。为了说明这一点,我们生成了一个易于分析的珠簧模型演化的时间序列数据。概率流可以被推断并用于间接量化熵产生率,但这种方法在高维系统中需要大量的数据。通过使用热力学不确定性关系,利用概率流中的统计涨落来限制熵产生率,可以部分缓解这种维度诅咒。