Section of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, Georg-August-Universität Göttingen, Göttingen, Germany.
Appl Microbiol Biotechnol. 2016 Oct;100(20):8789-807. doi: 10.1007/s00253-016-7693-3. Epub 2016 Jul 2.
Several transformation strains of Coprinopsis cinerea carry the defective tryptophan synthase allele trp1-1,1-6 which can be complemented by introduction of the trp1 (+) wild-type gene. Regularly in C. cinerea, single-trp1 (+)-vector transformations yield about half the numbers of clones than cotransformations with a non-trp1 (+)-plasmid done in parallel. The effect is also observed with the orthologous Schizophyllum commune trpB (+) gene shown here to function as a selection marker in C. cinerea. Parts of single-trp1 (+) - or single-trpB (+) -vector transformants are apparently lost. This paradoxical phenomenon relates to de-regulation of aromatic amino acid biosynthesis pathways. Adding tryptophan precursors to protoplast regeneration agar or feeding with other aromatic amino acids increases loss of single-trp1 (+)-vector transformants and also sets off loss of clones in cotransformation with a non-trp1 (+)-plasmid. Feedback control by tryptophan and cross-pathway control by tyrosine and phenylalanine are both active in the process. We deduce from the observations that more cotransformants than single-vector transformants are obtained by in average less disturbance of the tryptophan biosynthesis pathway. DNA in C. cinerea transformation usually integrates into the genome at multiple ectopic places. Integration events for a single vector per nucleus should statistically be 2-fold higher in single-vector transformations than in cotransformations in which the two different molecules compete for the same potential integration sites. Integration of more trp1 (+) copies into the genome might more likely lead to sudden tryptophan overproduction with subsequent rigid shut-down of the pathway. Blocking ectopic DNA integration in a Δku70 mutant abolished the effect of doubling clone numbers in cotransformations due to preferred single trp1 (+) integration by homologous recombination at its native genomic site.
几种毛栓菌的转化菌株携带缺陷色氨酸合酶等位基因 trp1-1,1-6,该基因可以通过引入 trp1 (+) 野生型基因进行互补。在毛栓菌中,通常情况下,单 trp1 (+)-载体转化产生的克隆数约为平行进行的非 trp1 (+)-质粒共转化的一半。这里展示的同源 Schizophyllum commune trpB (+) 基因也观察到了类似的效果,它在毛栓菌中作为选择标记。部分单 trp1 (+) -或单 trpB (+) -载体转化体显然丢失了。这种自相矛盾的现象与芳香族氨基酸生物合成途径的失调有关。在原生质体再生琼脂中添加色氨酸前体或用其他芳香族氨基酸喂养会增加单 trp1 (+)-载体转化体的丢失,同时也会引发非 trp1 (+)-质粒共转化体克隆的丢失。色氨酸的反馈控制和酪氨酸和苯丙氨酸的交叉途径控制在这个过程中都是活跃的。我们从观察结果中推断,通过平均较少地干扰色氨酸生物合成途径,获得了更多的共转化体而不是单载体转化体。毛栓菌转化中的 DNA 通常在多个异位点整合到基因组中。在单载体转化中,每个细胞核中单载体的整合事件应该比共转化中两种不同分子竞争相同潜在整合位点的整合事件高出 2 倍。更多 trp1 (+) 拷贝整合到基因组中可能更有可能导致色氨酸过量产生,随后该途径会突然关闭。在 Δku70 突变体中阻断异位 DNA 整合,由于同源重组在其天然基因组位点上优先进行单个 trp1 (+) 整合,从而消除了共转化中克隆数量增加两倍的效果。