Suppr超能文献

从神经元到流行病:营养连贯性如何影响传播过程。

From neurons to epidemics: How trophic coherence affects spreading processes.

作者信息

Klaise Janis, Johnson Samuel

机构信息

Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom.

出版信息

Chaos. 2016 Jun;26(6):065310. doi: 10.1063/1.4953160.

Abstract

Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

摘要

营养连贯性是衡量有向网络节点在层次上的组织程度的指标,最近已被证明与复杂系统的许多结构和动态方面密切相关,包括图特征谱、反馈循环的存在与否以及线性稳定性。此外,在神经元、物种、基因、代谢物、细胞信号传导、串联词、对等网络用户和世界贸易网络中都观察到了非平凡的营养结构。在这里,我们考虑两个简单但明显不同的动力学模型——一个是适用于包含复杂传播的易感-感染-易感流行病模型,另一个是阿马里-霍普菲尔德神经网络——并表明在这两种情况下,相关的传播过程都以相似的方式受到基础网络营养连贯性的调节。为此,我们提出了一种网络组装模型,该模型可以生成具有可调营养连贯性的结构,介于完全分层网络或随机图之间。我们发现营养连贯性可以对传播行为产生定性变化,决定活动脉冲是否会渗透到整个网络还是局限于节点的一个子集,以及这种活动是会迅速消失还是无限期持续。这些结果对于我们理解诸如流行病、谣言、生态系统冲击、神经元雪崩以及许多其他传播过程等现象可能很重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验