Mowery Danielle L, South Brett R, Christensen Lee, Leng Jianwei, Peltonen Laura-Maria, Salanterä Sanna, Suominen Hanna, Martinez David, Velupillai Sumithra, Elhadad Noémie, Savova Guergana, Pradhan Sameer, Chapman Wendy W
Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
Nursing Science, University of Turku, and Turku University Hospital, Turku, Finland.
J Biomed Semantics. 2016 Jul 1;7:43. doi: 10.1186/s13326-016-0084-y.
The ShARe/CLEF eHealth challenge lab aims to stimulate development of natural language processing and information retrieval technologies to aid patients in understanding their clinical reports. In clinical text, acronyms and abbreviations, also referenced as short forms, can be difficult for patients to understand. For one of three shared tasks in 2013 (Task 2), we generated a reference standard of clinical short forms normalized to the Unified Medical Language System. This reference standard can be used to improve patient understanding by linking to web sources with lay descriptions of annotated short forms or by substituting short forms with a more simplified, lay term.
In this study, we evaluate 1) accuracy of participating systems' normalizing short forms compared to a majority sense baseline approach, 2) performance of participants' systems for short forms with variable majority sense distributions, and 3) report the accuracy of participating systems' normalizing shared normalized concepts between the test set and the Consumer Health Vocabulary, a vocabulary of lay medical terms.
The best systems submitted by the five participating teams performed with accuracies ranging from 43 to 72 %. A majority sense baseline approach achieved the second best performance. The performance of participating systems for normalizing short forms with two or more senses with low ambiguity (majority sense greater than 80 %) ranged from 52 to 78 % accuracy, with two or more senses with moderate ambiguity (majority sense between 50 and 80 %) ranged from 23 to 57 % accuracy, and with two or more senses with high ambiguity (majority sense less than 50 %) ranged from 2 to 45 % accuracy. With respect to the ShARe test set, 69 % of short form annotations contained common concept unique identifiers with the Consumer Health Vocabulary. For these 2594 possible annotations, the performance of participating systems ranged from 50 to 75 % accuracy.
Short form normalization continues to be a challenging problem. Short form normalization systems perform with moderate to reasonable accuracies. The Consumer Health Vocabulary could enrich its knowledge base with missed concept unique identifiers from the ShARe test set to further support patient understanding of unfamiliar medical terms.
ShARe/CLEF电子健康挑战实验室旨在推动自然语言处理和信息检索技术的发展,以帮助患者理解其临床报告。在临床文本中,首字母缩略词和缩写词(也称为简称)可能让患者难以理解。对于2013年三项共享任务之一(任务2),我们生成了一个标准化为统一医学语言系统的临床简称参考标准。该参考标准可通过链接到带有注释简称的通俗易懂描述的网络资源,或用更简化的通俗术语替换简称,来提高患者的理解能力。
在本研究中,我们评估了:1)与多数语义基线方法相比,参与系统对简称进行标准化的准确性;2)参与系统对具有可变多数语义分布的简称的性能;3)报告参与系统在测试集和消费者健康词汇表(一个通俗医学术语词汇表)之间对共享标准化概念进行标准化的准确性。
五个参与团队提交的最佳系统的准确率在43%至72%之间。多数语义基线方法的性能排名第二。参与系统对具有两种或更多低歧义语义(多数语义大于80%)的简称进行标准化的准确率在52%至78%之间,对具有两种或更多中等歧义语义(多数语义在50%至80%之间)的简称进行标准化的准确率在23%至57%之间,对具有两种或更多高歧义语义(多数语义小于50%)的简称进行标准化的准确率在2%至45%之间。关于ShARe测试集,69%的简称注释包含与消费者健康词汇表的通用概念唯一标识符。对于这2594个可能的注释,参与系统的准确率在50%至75%之间。
简称标准化仍然是一个具有挑战性的问题。简称标准化系统的准确率从中等到合理。消费者健康词汇表可以通过从ShARe测试集中遗漏的概念唯一标识符来丰富其知识库,以进一步支持患者对不熟悉医学术语的理解。