Pincebourde Sylvain, Suppo Christelle
*Institut de Recherche sur la Biologie de l'Insecte (IRBI, CNRS UMR 7261), Université François Rabelais, Faculté des Sciences et Techniques, Tours 37200, France Société Entomologique Antilles-Guyane (SEAG), 18 Lotissement Amaryllis, 97354 Rémire-Montjoly, Guyane Française, France.
*Institut de Recherche sur la Biologie de l'Insecte (IRBI, CNRS UMR 7261), Université François Rabelais, Faculté des Sciences et Techniques, Tours 37200, France.
Integr Comp Biol. 2016 Jul;56(1):85-97. doi: 10.1093/icb/icw014.
Most tropical ectotherms live near their physiological limits for temperature. Substantial ecological effects of global change are predicted in the tropics despite the low amplitude of temperature change. These predictions assume that tropical ectotherms experience air temperature as measured by weather stations or predicted by global circulation models. The body temperature of ectotherms, however, can deviate from ambient air when the organism samples the mosaic of microclimates at fine scales. The thermal heterogeneity of tropical landscapes has been quantified only rarely in comparison to temperate habitats, limiting our ability to infer the vulnerability to warming of tropical ectotherms. Here, we used thermal imaging to quantify the heterogeneity in surface temperatures across spatial scales, from the micro- up to landscape scale, at the top of an Inselberg in French Guiana. We measured the thermal heterogeneity at the scale of Clusia nemorosa leaves, by categorizing leaves in full sun versus leaves in the shade to quantify the microclimatic variance available to phytophagous insects. Then, we measured the thermal heterogeneity at the scales of the single shrub and the landscape, for several sites differing in their orientation toward the sun to quantify the microclimatic heterogeneity available for larger ectotherms. All measurements were made three times per day over four consecutive days. There was a high level of thermal heterogeneity at all spatial scales. The thermal variance varied between scales, increasing from the within-leaf surface to the landscape scale. It also shifted across the day in different ways depending on the spatial scale. Then, using a set of published data, we compared the critical temperature (CTmax) of neo-tropical ectotherms and temperature distributions. The portion of space above the CTmax varied substantially depending on spatial scale and taxa. Insects were particularly at risk at the surface of leaves exposed to solar radiation but not on shaded leaves. By contrast, ants tolerated elevated surface temperatures and can survive almost anywhere in the habitat. We suggest that the fine scale mosaic of microclimates in the tropics modulates the vulnerability of ectotherms to warming. By moving just a few meters, or even a few centimeters, small tropical ectotherms can radically change their microclimatic temperature and escape overheating.
大多数热带变温动物生活在接近其生理温度极限的环境中。尽管热带地区温度变化幅度较小,但预计全球变化仍会产生重大生态影响。这些预测假设热带变温动物所经历的气温是由气象站测量或全球环流模型预测的。然而,当生物体在小尺度上对微气候的镶嵌体进行采样时,变温动物的体温可能会偏离周围空气的温度。与温带栖息地相比,热带景观的热异质性很少被量化,这限制了我们推断热带变温动物对变暖的脆弱性的能力。在这里,我们利用热成像技术,在法属圭亚那一座孤山上,从微观到景观尺度,量化了不同空间尺度上的地表温度异质性。我们通过将全日照下的叶子和遮荫下的叶子进行分类,测量了克卢西亚木属叶子尺度上的热异质性,以量化可供植食性昆虫利用的微气候差异。然后,我们在单个灌木和景观尺度上,对几个朝向太阳的方向不同的地点进行了热异质性测量,以量化可供较大变温动物利用的微气候异质性。所有测量在连续四天内每天进行三次。在所有空间尺度上都存在高度的热异质性。热方差在不同尺度间有所变化,从叶表面尺度到景观尺度逐渐增加。它还会根据空间尺度的不同在一天中以不同方式变化。然后,我们利用一组已发表的数据,比较了新热带区变温动物的临界温度(CTmax)和温度分布。高于CTmax的空间部分因空间尺度和分类群的不同而有很大差异。暴露在太阳辐射下的叶子表面的昆虫尤其面临风险,而在遮荫叶子上则不然。相比之下,蚂蚁能耐受较高的表面温度,几乎能在栖息地的任何地方生存。我们认为,热带地区微气候的精细尺度镶嵌体调节了变温动物对变暖的脆弱性。小型热带变温动物只需移动几米甚至几厘米,就能从根本上改变其微气候温度并避免过热。