Wang Feng, Wang Haiyan, Xu Kuai, Raymond Ross, Chon Jaime, Fuller Shaun, Debruyn Anton
School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona, USA.
J Med Syst. 2016 Aug;40(8):189. doi: 10.1007/s10916-016-0545-y. Epub 2016 Jul 2.
The rich data generated and read by millions of users on social media tells what is happening in the real world in a rapid and accurate fashion. In recent years many researchers have explored real-time streaming data from Twitter for a broad range of applications, including predicting stock markets and public health trend. In this paper we design, implement, and evaluate a prototype system to collect and analyze influenza statuses over different geographical locations with real-time tweet streams. We investigate the correlation between the Twitter flu counts and the official statistics from the Center for Disease Control and Prevention (CDC) and discover that real-time tweet streams capture the dynamics of influenza cases at both national and regional level and could potentially serve as an early warning system of influenza epidemics. Furthermore, we propose a dynamic mathematical model which can forecast Twitter flu counts with high accuracy.
数百万用户在社交媒体上生成并读取的丰富数据以快速且准确的方式揭示了现实世界中正在发生的事情。近年来,许多研究人员探索了来自推特的实时流数据在广泛应用中的使用,包括预测股票市场和公共卫生趋势。在本文中,我们设计、实现并评估了一个原型系统,该系统利用实时推文流收集和分析不同地理位置的流感状况。我们调查了推特上流感计数与疾病控制与预防中心(CDC)的官方统计数据之间的相关性,并发现实时推文流能够捕捉国家和地区层面流感病例的动态情况,并且有可能作为流感流行的早期预警系统。此外,我们提出了一个动态数学模型,该模型能够高精度地预测推特上的流感计数。