Suppr超能文献

Mettl3和Mettl14甲基转移酶协同作用的结构基础

Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases.

作者信息

Wang Ping, Doxtader Katelyn A, Nam Yunsun

机构信息

Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Mol Cell. 2016 Jul 21;63(2):306-317. doi: 10.1016/j.molcel.2016.05.041. Epub 2016 Jun 30.

Abstract

N(6)-methyladenosine (m(6)A) is a prevalent, reversible chemical modification of functional RNAs and is important for central events in biology. The core m(6)A writers are Mettl3 and Mettl14, which both contain methyltransferase domains. How Mettl3 and Mettl14 cooperate to catalyze methylation of adenosines has remained elusive. We present crystal structures of the complex of Mettl3/Mettl14 methyltransferase domains in apo form as well as with bound S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) in the catalytic site. We determine that the heterodimeric complex of methyltransferase domains, combined with CCCH motifs, constitutes the minimally required regions for creating m(6)A modifications in vitro. We also show that Mettl3 is the catalytically active subunit, while Mettl14 plays a structural role critical for substrate recognition. Our model provides a molecular explanation for why certain mutations of Mettl3 and Mettl14 lead to impaired function of the methyltransferase complex.

摘要

N⁶-甲基腺苷(m⁶A)是功能性RNA中一种普遍存在的、可逆的化学修饰,对生物学中的核心事件至关重要。核心m⁶A甲基转移酶是Mettl3和Mettl14,它们都含有甲基转移酶结构域。Mettl3和Mettl14如何协同催化腺苷的甲基化一直不清楚。我们展示了apo形式的Mettl3/Mettl14甲基转移酶结构域复合物以及催化位点结合有S-腺苷甲硫氨酸(SAM)或S-腺苷同型半胱氨酸(SAH)的晶体结构。我们确定甲基转移酶结构域的异二聚体复合物与CCCH基序相结合,构成了体外产生m⁶A修饰所需的最小区域。我们还表明Mettl3是具有催化活性的亚基,而Mettl14在底物识别中起关键的结构作用。我们的模型为Mettl3和Mettl14的某些突变为何会导致甲基转移酶复合物功能受损提供了分子解释。

相似文献

1
Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases.
Mol Cell. 2016 Jul 21;63(2):306-317. doi: 10.1016/j.molcel.2016.05.041. Epub 2016 Jun 30.
2
Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex.
Nature. 2016 Jun 23;534(7608):575-8. doi: 10.1038/nature18298. Epub 2016 May 25.
3
Human mA writers: Two subunits, 2 roles.
RNA Biol. 2017 Mar 4;14(3):300-304. doi: 10.1080/15476286.2017.1282025. Epub 2017 Jan 25.
4
RNA secondary structure dependence in METTL3-METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3.
Biol Chem. 2020 Oct 19;402(1):89-98. doi: 10.1515/hsz-2020-0265. Print 2020 Nov 18.
5
Solution structure of the RNA recognition domain of METTL3-METTL14 N-methyladenosine methyltransferase.
Protein Cell. 2019 Apr;10(4):272-284. doi: 10.1007/s13238-018-0518-7. Epub 2018 Mar 14.
6
Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation.
PLoS Biol. 2022 Feb 10;20(2):e3001535. doi: 10.1371/journal.pbio.3001535. eCollection 2022 Feb.
7
Interactions, localization, and phosphorylation of the mA generating METTL3-METTL14-WTAP complex.
RNA. 2018 Apr;24(4):499-512. doi: 10.1261/rna.064063.117. Epub 2018 Jan 18.
8
A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation.
Nat Chem Biol. 2014 Feb;10(2):93-5. doi: 10.1038/nchembio.1432. Epub 2013 Dec 6.
9
Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14.
Nucleic Acids Res. 2022 Jan 11;50(1):449-457. doi: 10.1093/nar/gkab1211.
10
Structural insights into the RNA methyltransferase domain of METTL16.
Sci Rep. 2018 Mar 28;8(1):5311. doi: 10.1038/s41598-018-23608-8.

引用本文的文献

2
METTL5-mediated 18S rRNA mA modification enhances ribosome assembly and ABA response in .
Imeta. 2025 Jun 13;4(4):e70055. doi: 10.1002/imt2.70055. eCollection 2025 Aug.
3
Structures and mechanisms of U6 snRNA mA modification by METTL16.
Nat Commun. 2025 Aug 21;16(1):7708. doi: 10.1038/s41467-025-63021-0.
4
Small-molecule and peptide inhibitors of m6A regulators.
Front Oncol. 2025 Aug 1;15:1629864. doi: 10.3389/fonc.2025.1629864. eCollection 2025.
6
ERK-METTL3 axis acts as a novel regulator of antiviral innate immunity combating pseudorabies virus infection.
PLoS Pathog. 2025 Aug 13;21(8):e1013234. doi: 10.1371/journal.ppat.1013234. eCollection 2025 Aug.

本文引用的文献

1
N6-methyladenosine–encoded epitranscriptomics.
Nat Struct Mol Biol. 2016 Feb;23(2):98-102. doi: 10.1038/nsmb.3162.
2
LncRNAs: key players and novel insights into cervical cancer.
Tumour Biol. 2016 Mar;37(3):2779-88. doi: 10.1007/s13277-015-4663-9. Epub 2015 Dec 29.
3
A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5.
J Biomol Screen. 2016 Mar;21(3):290-7. doi: 10.1177/1087057115623264. Epub 2015 Dec 23.
5
N(6)-Methyladenosine Modification in a Long Noncoding RNA Hairpin Predisposes Its Conformation to Protein Binding.
J Mol Biol. 2016 Feb 27;428(5 Pt A):822-833. doi: 10.1016/j.jmb.2015.08.021. Epub 2015 Sep 4.
7
N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency.
Cell. 2015 Jun 4;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
8
N6-methyladenosine marks primary microRNAs for processing.
Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.
9
N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions.
Nature. 2015 Feb 26;518(7540):560-4. doi: 10.1038/nature14234.
10
m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency.
Cell Stem Cell. 2015 Mar 5;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub 2015 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验