Charité-Universitätsmedizin Berlin , Molekulares Krebsforschungszentrum (MKFZ), Augustenburger Platz 1, 13353 Berlin, Germany.
German Cancer Consortium, Deutsches Krebsforschungzentrum (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
Anal Chem. 2016 Aug 2;88(15):7487-92. doi: 10.1021/acs.analchem.6b02515. Epub 2016 Jul 21.
Metabolomics, the analysis of potentially all small molecules within a biological system, has become a valuable tool for biomarker identification and the elucidation of biological processes. While metabolites are often present in complex mixtures at extremely different concentrations, the dynamic range of available analytical methods to capture this variance is generally limited. Here, we show that gas chromatography coupled to atmospheric pressure chemical ionization mass spectrometry (GC-APCI-MS), a state of the art analytical technology applied in metabolomics analyses, shows an average linear range (LR) of 2.39 orders of magnitude for a set of 62 metabolites from a representative compound mixture. We further developed a computational tool to extend this dynamic range on average by more than 1 order of magnitude, demonstrated with a dilution series of the compound mixture, using robust and automatic reconstruction of intensity values exceeding the detection limit. The tool is freely available as an R package (CorrectOverloadedPeaks) from CRAN ( https://cran.r-project.org/ ) and can be incorporated in a metabolomics data processing pipeline facilitating large screening assays.
代谢组学是对生物系统中所有潜在小分子的分析,已成为鉴定生物标志物和阐明生物过程的有用工具。虽然代谢物通常以极其不同的浓度存在于复杂混合物中,但现有分析方法捕捉这种差异的动态范围通常有限。在这里,我们表明气相色谱-大气压化学电离质谱联用 (GC-APCI-MS),一种应用于代谢组学分析的先进分析技术,对于一组来自代表性化合物混合物的 62 种代谢物,其平均线性范围 (LR) 为 2.39 个数量级。我们进一步开发了一种计算工具,使用化合物混合物的稀释系列,通过稳健且自动重建超过检测限的强度值,平均将这个动态范围扩展了一个数量级以上。该工具可作为 CRAN(https://cran.r-project.org/)上的 R 包(CorrectOverloadedPeaks)免费获得,并可整合到代谢组学数据处理管道中,以促进大型筛选试验。