Suppr超能文献

心脏中钠钙交换的建模:变构激活、空间定位、钙火花与兴奋-收缩偶联

Modeling Na-Ca exchange in the heart: Allosteric activation, spatial localization, sparks and excitation-contraction coupling.

作者信息

Chu Lulu, Greenstein Joseph L, Winslow Raimond L

机构信息

Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.

出版信息

J Mol Cell Cardiol. 2016 Oct;99:174-187. doi: 10.1016/j.yjmcc.2016.06.068. Epub 2016 Jul 2.

Abstract

The cardiac sodium (Na)/calcium (Ca) exchanger (NCX1) is an electrogenic membrane transporter that regulates Ca homeostasis in cardiomyocytes, serving mainly to extrude Ca during diastole. The direction of Ca transport reverses at membrane potentials near that of the action potential plateau, generating an influx of Ca into the cell. Therefore, there has been great interest in the possible roles of NCX1 in cardiac Ca-induced Ca release (CICR). Interest has been reinvigorated by a recent super-resolution optical imaging study suggesting that 18% of NCX1 co-localize with ryanodine receptor (RyR2) clusters, and ~30% of additional NCX1 are localized to within ~120nm of the nearest RyR2. NCX1 may therefore occupy a privileged position in which to modulate CICR. To examine this question, we have developed a mechanistic biophysically-detailed model of NCX1 that describes both NCX1 transport kinetics and Ca-dependent allosteric regulation. This NCX1 model was incorporated into a previously developed super-resolution model of the Ca spark as well as a computational model of the cardiac ventricular myocyte that includes a detailed description of CICR with stochastic gating of L-type Ca channels and RyR2s, and that accounts for local Ca gradients near the dyad via inclusion of a peri-dyadic (PD) compartment. Both models predict that increasing the fraction of NCX1 in the dyad and PD decreases spark frequency, fidelity, and diastolic Ca levels. Spark amplitude and duration are less sensitive to NCX1 spatial redistribution. On the other hand, NCX1 plays an important role in promoting Ca entry into the dyad, and hence contributing to the trigger for RyR2 release at depolarized membrane potentials and in the presence of elevated local Na concentration. Whole-cell simulation of NCX1 tail currents are consistent with the finding that a relatively high fraction of NCX1 (45%) resides in the dyadic and PD spaces, with a dyad-to-PD ratio of roughly 1:2. Allosteric Ca activation of NCX1 helps to "functionally localize" exchanger activity to the dyad and PD by reducing exchanger activity in the cytosol thereby protecting the cell from excessive loss of Ca during diastole.

摘要

心脏钠(Na)/钙(Ca)交换体(NCX1)是一种生电膜转运蛋白,可调节心肌细胞中的钙稳态,主要在舒张期将钙排出细胞。在接近动作电位平台的膜电位时,钙转运方向会逆转,导致钙流入细胞。因此,人们对NCX1在心脏钙诱导钙释放(CICR)中可能发挥的作用极为关注。最近一项超分辨率光学成像研究重新激发了人们的兴趣,该研究表明约18%的NCX1与兰尼碱受体(RyR2)簇共定位,另外约30%的NCX1定位于距离最近的RyR2约120nm范围内。因此,NCX1可能处于调节CICR的有利位置。为了研究这个问题,我们开发了一个NCX1的机制性生物物理详细模型,该模型描述了NCX1的转运动力学和钙依赖性变构调节。这个NCX1模型被纳入了之前开发的钙火花超分辨率模型以及心室肌细胞计算模型中,后者包括对CICR的详细描述,其中L型钙通道和RyR2具有随机门控,并通过包含二联体周围(PD)区室来解释二联体附近的局部钙梯度。两个模型都预测,增加二联体和PD中NCX1的比例会降低火花频率、保真度和舒张期钙水平。火花幅度和持续时间对NCX1空间重新分布的敏感性较低。另一方面,NCX1在促进钙进入二联体方面起着重要作用,从而有助于在去极化膜电位和局部钠浓度升高时触发RyR2释放。NCX1尾电流的全细胞模拟与以下发现一致:相对较高比例(约45%)的NCX1存在于二联体和PD空间中,二联体与PD的比例约为1:2。NCX1的变构钙激活通过降低胞质溶胶中的交换体活性,有助于将交换体活性“功能定位”到二联体和PD,从而保护细胞在舒张期免受过多钙流失的影响。

相似文献

1
Modeling Na-Ca exchange in the heart: Allosteric activation, spatial localization, sparks and excitation-contraction coupling.
J Mol Cell Cardiol. 2016 Oct;99:174-187. doi: 10.1016/j.yjmcc.2016.06.068. Epub 2016 Jul 2.
2
Na microdomains and sparks: Role in cardiac excitation-contraction coupling and arrhythmias in ankyrin-B deficiency.
J Mol Cell Cardiol. 2019 Mar;128:145-157. doi: 10.1016/j.yjmcc.2019.02.001. Epub 2019 Feb 5.
4
Cardiac sodium transport and excitation-contraction coupling.
J Mol Cell Cardiol. 2013 Aug;61:11-9. doi: 10.1016/j.yjmcc.2013.06.003. Epub 2013 Jun 14.
5
Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes.
Biophys J. 2002 Mar;82(3):1483-96. doi: 10.1016/S0006-3495(02)75502-1.
6
Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1.
Circ Res. 2004 Sep 17;95(6):604-11. doi: 10.1161/01.RES.0000142316.08250.68. Epub 2004 Aug 12.
8
Activation of reverse Na-Ca exchanger by skeletal Na channel isoform increases excitation-contraction coupling efficiency in rabbit cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H593-H603. doi: 10.1152/ajpheart.00545.2020. Epub 2020 Dec 4.

引用本文的文献

1
Age-Dependent Changes in Calcium Regulation after Myocardial Ischemia-Reperfusion Injury.
Biomedicines. 2023 Apr 17;11(4):1193. doi: 10.3390/biomedicines11041193.
4
Estimating ectopic beat probability with simplified statistical models that account for experimental uncertainty.
PLoS Comput Biol. 2021 Oct 19;17(10):e1009536. doi: 10.1371/journal.pcbi.1009536. eCollection 2021 Oct.
5
Spontaneous Ca Fluctuations Arise in Thin Astrocytic Processes With Real 3D Geometry.
Front Cell Neurosci. 2021 Mar 1;15:617989. doi: 10.3389/fncel.2021.617989. eCollection 2021.
7
Nerol Attenuates Ouabain-Induced Arrhythmias.
Evid Based Complement Alternat Med. 2019 Mar 7;2019:5935921. doi: 10.1155/2019/5935921. eCollection 2019.
8
Key residues controlling bidirectional ion movements in Na/Ca exchanger.
Cell Calcium. 2018 Dec;76:10-22. doi: 10.1016/j.ceca.2018.09.004. Epub 2018 Sep 15.
9
NCX-Mediated Subcellular Ca Dynamics Underlying Early Afterdepolarizations in LQT2 Cardiomyocytes.
Biophys J. 2018 Sep 18;115(6):1019-1032. doi: 10.1016/j.bpj.2018.08.004. Epub 2018 Aug 9.
10
A privileged role for neuronal Na channels in regulating ventricular [Ca] and arrhythmias.
J Gen Physiol. 2018 Jul 2;150(7):901-905. doi: 10.1085/jgp.201812120. Epub 2018 Jun 13.

本文引用的文献

1
Mechanistic Investigation of the Arrhythmogenic Role of Oxidized CaMKII in the Heart.
Biophys J. 2015 Aug 18;109(4):838-49. doi: 10.1016/j.bpj.2015.06.064.
2
Superresolution modeling of calcium release in the heart.
Biophys J. 2014 Dec 16;107(12):3018-3029. doi: 10.1016/j.bpj.2014.11.003.
3
Reduced junctional Na+/Ca2+-exchanger activity contributes to sarcoplasmic reticulum Ca2+ leak in junctophilin-2-deficient mice.
Am J Physiol Heart Circ Physiol. 2014 Nov 1;307(9):H1317-26. doi: 10.1152/ajpheart.00413.2014. Epub 2014 Sep 5.
5
Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization.
J Am Coll Cardiol. 2013 Nov 19;62(21):2010-9. doi: 10.1016/j.jacc.2013.06.052. Epub 2013 Aug 21.
6
Population shift underlies Ca2+-induced regulatory transitions in the sodium-calcium exchanger (NCX).
J Biol Chem. 2013 Aug 9;288(32):23141-9. doi: 10.1074/jbc.M113.471698. Epub 2013 Jun 24.
7
Cardiac Na+-Ca2+ exchanger: dynamics of Ca2+-dependent activation and deactivation in intact myocytes.
J Physiol. 2013 Apr 15;591(8):2067-86. doi: 10.1113/jphysiol.2013.252080. Epub 2013 Feb 11.
8
Dynamic features of allosteric Ca2+ sensor in tissue-specific NCX variants.
Cell Calcium. 2012 Jun;51(6):478-85. doi: 10.1016/j.ceca.2012.04.007. Epub 2012 May 7.
9
Data-based theoretical identification of subcellular calcium compartments and estimation of calcium dynamics in cardiac myocytes.
J Physiol. 2012 Sep 15;590(18):4423-46. doi: 10.1113/jphysiol.2012.228791. Epub 2012 Apr 30.
10
Modelling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit.
J Physiol. 2012 Sep 15;590(18):4403-22. doi: 10.1113/jphysiol.2012.227926. Epub 2012 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验