Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978, Israel.
Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
Cell Calcium. 2018 Dec;76:10-22. doi: 10.1016/j.ceca.2018.09.004. Epub 2018 Sep 15.
Prokaryotic and eukaryotic Na/Ca exchangers (NCX) control Ca homeostasis. NCX orthologs exhibit up to 10-fold differences in their turnover rates (k), whereas the ratios between the cytosolic (cyt) and extracellular (ext) K values (K = K/K) are highly asymmetric and alike (K ≤ 0.1) among NCXs. The structural determinants controlling a huge divergence in k at comparable K remain unclear, although 11 (out of 12) ion-coordinating residues are highly conserved among NCXs. The crystal structure of the archaeal NCX (NCX_Mj) was explored for testing the mutational effects of pore-allied and loop residues on k and K. Among 55 tested residues, 26 mutations affect either k or K, where two major groups can be distinguished. The first group of mutations (14 residues) affect k rather than K. The majority of these residues (10 out of 14) are located within the extracellular vestibule near the pore center. The second group of mutations (12 residues) affect K rather than k, whereas the majority of residues (9 out 12) are randomly dispersed within the extracellular vestibule. In conjunction with computational modeling-simulations and hydrogen-deuterium exchange mass-spectrometry (HDX-MS), the present mutational analysis highlights structural elements that differentially govern the intrinsic asymmetry and transport rates. The key residues, located at specific segments, can affect the characteristic features of local backbone dynamics and thus, the conformational flexibility of ion-transporting helices contributing to critical conformational transitions. The underlying mechanisms might have a physiological relevance for matching the response modes of NCX variants to cell-specific Ca and Na signaling.
原核生物和真核生物的钠/钙交换器(NCX)控制着钙的动态平衡。NCX 的同源物在其周转率(k)上存在高达 10 倍的差异,而细胞溶质(cyt)和细胞外(ext)K 值之间的比值(K = K/K)在 NCX 中高度不对称且相似(K ≤ 0.1)。尽管在 NCX 中,有 11 个(12 个中的 11 个)离子配位残基高度保守,但控制 k 在可比 K 下发生巨大分歧的结构决定因素仍不清楚。
为了测试孔相关和环残基对 k 和 K 的突变效应,我们探索了古细菌 NCX(NCX_Mj)的晶体结构。在测试的 55 个残基中,有 26 个突变影响 k 或 K,其中可以区分出两个主要组。第一组突变(14 个残基)影响 k 而不影响 K。这些残基中的大多数(14 个中的 10 个)位于靠近孔中心的细胞外前庭内。第二组突变(12 个残基)影响 K 而不影响 k,而大多数残基(12 个中的 9 个)随机分布在细胞外前庭内。结合计算建模模拟和氘氢交换质谱(HDX-MS),目前的突变分析突出了差异调控固有不对称性和转运速率的结构元素。位于特定片段的关键残基可以影响局部骨架动力学的特征,从而影响离子转运螺旋的构象灵活性,为关键构象转变做出贡献。这些潜在的机制可能与 NCX 变体对细胞特异性 Ca 和 Na 信号的响应模式相匹配有关,具有生理相关性。