Suppr超能文献

控制 Na/Ca 交换器中离子双向运动的关键残基。

Key residues controlling bidirectional ion movements in Na/Ca exchanger.

机构信息

Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978, Israel.

Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.

出版信息

Cell Calcium. 2018 Dec;76:10-22. doi: 10.1016/j.ceca.2018.09.004. Epub 2018 Sep 15.

Abstract

Prokaryotic and eukaryotic Na/Ca exchangers (NCX) control Ca homeostasis. NCX orthologs exhibit up to 10-fold differences in their turnover rates (k), whereas the ratios between the cytosolic (cyt) and extracellular (ext) K values (K = K/K) are highly asymmetric and alike (K ≤ 0.1) among NCXs. The structural determinants controlling a huge divergence in k at comparable K remain unclear, although 11 (out of 12) ion-coordinating residues are highly conserved among NCXs. The crystal structure of the archaeal NCX (NCX_Mj) was explored for testing the mutational effects of pore-allied and loop residues on k and K. Among 55 tested residues, 26 mutations affect either k or K, where two major groups can be distinguished. The first group of mutations (14 residues) affect k rather than K. The majority of these residues (10 out of 14) are located within the extracellular vestibule near the pore center. The second group of mutations (12 residues) affect K rather than k, whereas the majority of residues (9 out 12) are randomly dispersed within the extracellular vestibule. In conjunction with computational modeling-simulations and hydrogen-deuterium exchange mass-spectrometry (HDX-MS), the present mutational analysis highlights structural elements that differentially govern the intrinsic asymmetry and transport rates. The key residues, located at specific segments, can affect the characteristic features of local backbone dynamics and thus, the conformational flexibility of ion-transporting helices contributing to critical conformational transitions. The underlying mechanisms might have a physiological relevance for matching the response modes of NCX variants to cell-specific Ca and Na signaling.

摘要

原核生物和真核生物的钠/钙交换器(NCX)控制着钙的动态平衡。NCX 的同源物在其周转率(k)上存在高达 10 倍的差异,而细胞溶质(cyt)和细胞外(ext)K 值之间的比值(K = K/K)在 NCX 中高度不对称且相似(K ≤ 0.1)。尽管在 NCX 中,有 11 个(12 个中的 11 个)离子配位残基高度保守,但控制 k 在可比 K 下发生巨大分歧的结构决定因素仍不清楚。

为了测试孔相关和环残基对 k 和 K 的突变效应,我们探索了古细菌 NCX(NCX_Mj)的晶体结构。在测试的 55 个残基中,有 26 个突变影响 k 或 K,其中可以区分出两个主要组。第一组突变(14 个残基)影响 k 而不影响 K。这些残基中的大多数(14 个中的 10 个)位于靠近孔中心的细胞外前庭内。第二组突变(12 个残基)影响 K 而不影响 k,而大多数残基(12 个中的 9 个)随机分布在细胞外前庭内。结合计算建模模拟和氘氢交换质谱(HDX-MS),目前的突变分析突出了差异调控固有不对称性和转运速率的结构元素。位于特定片段的关键残基可以影响局部骨架动力学的特征,从而影响离子转运螺旋的构象灵活性,为关键构象转变做出贡献。这些潜在的机制可能与 NCX 变体对细胞特异性 Ca 和 Na 信号的响应模式相匹配有关,具有生理相关性。

相似文献

1
Key residues controlling bidirectional ion movements in Na/Ca exchanger.
Cell Calcium. 2018 Dec;76:10-22. doi: 10.1016/j.ceca.2018.09.004. Epub 2018 Sep 15.
2
Functional asymmetry of bidirectional Ca2+-movements in an archaeal sodium-calcium exchanger (NCX_Mj).
Cell Calcium. 2014 Oct;56(4):276-84. doi: 10.1016/j.ceca.2014.08.010. Epub 2014 Aug 27.
3
Structure-dynamic and functional relationships in a Li-transporting sodium‑calcium exchanger mutant.
Biochim Biophys Acta Bioenerg. 2019 Mar 1;1860(3):189-200. doi: 10.1016/j.bbabio.2018.11.015. Epub 2018 Nov 8.
5
Structure-Functional Basis of Ion Transport in Sodium-Calcium Exchanger (NCX) Proteins.
Int J Mol Sci. 2016 Nov 22;17(11):1949. doi: 10.3390/ijms17111949.
6
Dynamic distinctions in the Na/Ca exchanger adopting the inward- and outward-facing conformational states.
J Biol Chem. 2017 Jul 21;292(29):12311-12323. doi: 10.1074/jbc.M117.787168. Epub 2017 Jun 1.
7
Structure-affinity insights into the Na and Ca interactions with multiple sites of a sodium-calcium exchanger.
FEBS J. 2020 Nov;287(21):4678-4695. doi: 10.1111/febs.15250. Epub 2020 Mar 2.
8
Characteristic attributes limiting the transport rates in NCX orthologs.
Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183792. doi: 10.1016/j.bbamem.2021.183792. Epub 2021 Sep 25.
9
Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5354-62. doi: 10.1073/pnas.1415751111. Epub 2014 Dec 2.
10
Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger.
Science. 2012 Feb 10;335(6069):686-90. doi: 10.1126/science.1215759.

引用本文的文献

2
Structural dynamics of Na and Ca interactions with full-size mammalian NCX.
Commun Biol. 2024 Apr 16;7(1):463. doi: 10.1038/s42003-024-06159-9.
3
Conformational free-energy landscapes of a Na/Ca exchanger explain its alternating-access mechanism and functional specificity.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2318009121. doi: 10.1073/pnas.2318009121. Epub 2024 Apr 8.
4
Structure-Based Function and Regulation of NCX Variants: Updates and Challenges.
Int J Mol Sci. 2022 Dec 21;24(1):61. doi: 10.3390/ijms24010061.
5
Exploring the Li transporting mutant of NCX_Mj for assigning ion binding sites of mitochondrial NCLX.
Cell Calcium. 2022 Nov;107:102651. doi: 10.1016/j.ceca.2022.102651. Epub 2022 Sep 9.
6
Proton-modulated interactions of ions with transport sites of prokaryotic and eukaryotic NCX prototypes.
Cell Calcium. 2021 Nov;99:102476. doi: 10.1016/j.ceca.2021.102476. Epub 2021 Sep 20.
7
The Archaeal Na/Ca Exchanger (NCX_Mj) as a Model of Ion Transport for the Superfamily of Ca/CA Antiporters.
Front Chem. 2021 Jul 30;9:722336. doi: 10.3389/fchem.2021.722336. eCollection 2021.
8
New understanding of electrical activity brought by surface potential of cardiomyocytes.
Sci Rep. 2021 Mar 23;11(1):6593. doi: 10.1038/s41598-021-86138-w.
10
Modulation of the cardiac Na-Ca exchanger by cytoplasmic protons: Molecular mechanisms and physiological implications.
Cell Calcium. 2020 May;87:102140. doi: 10.1016/j.ceca.2019.102140. Epub 2019 Dec 11.

本文引用的文献

1
Residues important for Ca ion transport in the neuronal K-dependent Na-Ca exchanger (NCKX2).
Cell Calcium. 2018 Sep;74:187-197. doi: 10.1016/j.ceca.2018.06.002. Epub 2018 Jun 30.
2
Residues important for K ion transport in the K-dependent Na-Ca exchanger (NCKX2).
Cell Calcium. 2018 Sep;74:61-72. doi: 10.1016/j.ceca.2018.06.005. Epub 2018 Jun 25.
3
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system.
Cell Calcium. 2018 Jul;73:25-39. doi: 10.1016/j.ceca.2018.04.001. Epub 2018 Apr 8.
4
Structural biology of solute carrier (SLC) membrane transport proteins.
Mol Membr Biol. 2017 Feb-Mar;34(1-2):1-32. doi: 10.1080/09687688.2018.1448123. Epub 2018 Apr 13.
5
NCX-DB: a unified resource for integrative analysis of the sodium calcium exchanger super-family.
BMC Neurosci. 2018 Apr 13;19(1):19. doi: 10.1186/s12868-018-0423-2.
6
Structural dynamics is a determinant of the functional significance of missense variants.
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4164-4169. doi: 10.1073/pnas.1715896115. Epub 2018 Apr 2.
8
The prokaryotic Na/Ca exchanger NCX_Mj transports Na and Ca in a 3:1 stoichiometry.
J Gen Physiol. 2018 Jan 2;150(1):51-65. doi: 10.1085/jgp.201711897. Epub 2017 Dec 13.
9
Crosslink between calcium and sodium signalling.
Exp Physiol. 2018 Feb 1;103(2):157-169. doi: 10.1113/EP086534. Epub 2018 Jan 16.
10
Dynamic distinctions in the Na/Ca exchanger adopting the inward- and outward-facing conformational states.
J Biol Chem. 2017 Jul 21;292(29):12311-12323. doi: 10.1074/jbc.M117.787168. Epub 2017 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验