Suppr超能文献

模拟乳腺钼靶环境中乳腺微钙化簇的计算生长模型

Computational growth model of breast microcalcification clusters in simulated mammographic environments.

作者信息

Plourde Shayne M, Marin Zach, Smith Zachary R, Toner Brian C, Batchelder Kendra A, Khalil Andre

机构信息

CompuMAINE Laboratory, Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA.

CompuMAINE Laboratory, Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA; Department of Physics and Astronomy, University of Maine, Orono, ME 04469, USA.

出版信息

Comput Biol Med. 2016 Sep 1;76:7-13. doi: 10.1016/j.compbiomed.2016.06.020. Epub 2016 Jun 21.

Abstract

BACKGROUND

When screening for breast cancer, the radiological interpretation of mammograms is a difficult task, particularly when classifying precancerous growth such as microcalcifications (MCs). Biophysical modeling of benign vs. malignant growth of MCs in simulated mammographic backgrounds may improve characterization of these structures

METHODS

A mathematical model based on crystal growth rules for calcium oxide (benign) and hydroxyapatite (malignant) was used in conjunction with simulated mammographic backgrounds, which were generated by fractional Brownian motion of varying roughness and quantified by the Hurst exponent to mimic tissue of varying density. Simulated MC clusters were compared by fractal dimension, average circularity of individual MCs, average number of MCs per cluster, and average cluster area.

RESULTS

Benign and malignant clusters were distinguishable by average circularity, average number of MCs per cluster, and average cluster area with p<0.01 across all Hurst exponent values considered. Clusters were distinguishable by fractal dimension with p<0.05 in low Hurst exponent environments. As the Hurst exponent increased (tissue density increased) benign and malignant MCs became indistinguishable by fractal dimension.

CONCLUSIONS

The fractal dimension of MCs changes with breast tissue density, which suggests tissue environment plays a role in regulating MC growth. Benign and malignant MCs are distinguishable in all types of tissue by shape, size, and area, which is consistent with findings in the literature. These results may help to better understand the effects of the tissue environment on tumor progression, and improve classification of MCs in mammograms via computer-aided diagnosis.

摘要

背景

在乳腺癌筛查中,乳房X光片的放射学解读是一项艰巨的任务,尤其是在对癌前病变(如微钙化灶)进行分类时。在模拟乳房X光背景下对微钙化灶的良性与恶性生长进行生物物理建模,可能会改善对这些结构的特征描述。

方法

基于氧化钙(良性)和羟基磷灰石(恶性)晶体生长规则的数学模型,与模拟乳房X光背景相结合使用,该背景由不同粗糙度的分数布朗运动生成,并通过赫斯特指数进行量化,以模拟不同密度的组织。通过分形维数、单个微钙化灶的平均圆度、每个簇的微钙化灶平均数量以及平均簇面积对模拟的微钙化灶簇进行比较。

结果

在所有考虑的赫斯特指数值范围内,良性和恶性簇可通过平均圆度、每个簇的微钙化灶平均数量以及平均簇面积进行区分,p<0.01。在低赫斯特指数环境中,簇可通过分形维数进行区分,p<0.05。随着赫斯特指数增加(组织密度增加),良性和恶性微钙化灶在分形维数上变得无法区分。

结论

微钙化灶的分形维数随乳腺组织密度而变化,这表明组织环境在调节微钙化灶生长中起作用。良性和恶性微钙化灶在所有类型的组织中,在形状、大小和面积方面都可区分,这与文献中的发现一致。这些结果可能有助于更好地理解组织环境对肿瘤进展的影响,并通过计算机辅助诊断改善乳房X光片中微钙化灶的分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验