Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia.
Current address: School of IT, The University of Sydney, Darlington, NSW, Australia.
BMC Bioinformatics. 2017 Dec 28;18(Suppl 16):566. doi: 10.1186/s12859-017-1966-4.
Cell division (mitosis) results in the equal segregation of chromosomes between two daughter cells. The mitotic spindle plays a pivotal role in chromosome alignment and segregation during metaphase and anaphase. Structural or functional errors of this spindle can cause aneuploidy, a hallmark of many cancers. To investigate if a given protein associates with the mitotic spindle and regulates its assembly, stability, or function, fluorescence microscopy can be performed to determine if disruption of that protein induces phenotypes indicative of spindle dysfunction. Importantly, functional disruption of proteins with specific roles during mitosis can lead to cancer cell death by inducing mitotic insult. However, there is a lack of automated computational tools to detect and quantify the effects of such disruption on spindle integrity.
We developed the image analysis software tool MatQuantify, which detects both large-scale and subtle structural changes in the spindle or DNA and can be used to statistically compare the effects of different treatments. MatQuantify can quantify various physical properties extracted from fluorescence microscopy images, such as area, lengths of various components, perimeter, eccentricity, fractal dimension, satellite objects and orientation. It can also measure textual properties including entropy, intensities and the standard deviation of intensities. Using MatQuantify, we studied the effect of knocking down the protein clathrin heavy chain (CHC) on the mitotic spindle. We analysed 217 microscopy images of untreated metaphase cells, 172 images of metaphase cells transfected with small interfering RNAs targeting the luciferase gene (as a negative control), and 230 images of metaphase cells depleted of CHC. Using the quantified data, we trained 23 supervised machine learning classification algorithms. The Support Vector Machine learning algorithm was the most accurate method (accuracy: 85.1%; area under the curve: 0.92) for classifying a spindle image. The Kruskal-Wallis and Tukey-Kramer tests demonstrated that solidity, compactness, eccentricity, extent, mean intensity and number of satellite objects (multipolar spindles) significantly differed between CHC-depleted cells and untreated/luciferase-knockdown cells.
MatQuantify enables automated quantitative analysis of images of mitotic spindles. Using this tool, researchers can unambiguously test if disruption of a protein-of-interest changes metaphase spindle maintenance and thereby affects mitosis.
细胞分裂(有丝分裂)导致染色体在两个子细胞之间均等分离。有丝分裂纺锤体在中期和后期染色体排列和分离中起着关键作用。该纺锤体的结构或功能错误会导致非整倍体,这是许多癌症的标志。为了研究特定蛋白质是否与有丝分裂纺锤体结合并调节其组装、稳定性或功能,可以进行荧光显微镜检查以确定该蛋白质的破坏是否会诱导纺锤体功能障碍的表型。重要的是,在有丝分裂过程中具有特定作用的蛋白质的功能破坏会通过诱导有丝分裂损伤导致癌细胞死亡。然而,缺乏用于检测和量化这种破坏对纺锤体完整性影响的自动化计算工具。
我们开发了图像分析软件工具 MatQuantify,它可以检测纺锤体或 DNA 的大规模和细微结构变化,并可用于统计比较不同处理的效果。MatQuantify 可以量化从荧光显微镜图像中提取的各种物理特性,例如面积、各个组件的长度、周长、偏心率、分形维数、卫星物体和方向。它还可以测量文本特性,包括熵、强度和强度的标准差。使用 MatQuantify,我们研究了敲低网格蛋白重链(CHC)蛋白对有丝分裂纺锤体的影响。我们分析了 217 张未经处理的中期细胞显微镜图像、172 张靶向荧光素基因的小干扰 RNA 转染的中期细胞图像(作为阴性对照)和 230 张 CHC 耗尽的中期细胞图像。使用量化数据,我们训练了 23 个监督机器学习分类算法。支持向量机学习算法是分类纺锤体图像最准确的方法(准确性:85.1%;曲线下面积:0.92)。Kruskal-Wallis 和 Tukey-Kramer 检验表明,CHC 耗尽细胞与未经处理/荧光素敲低细胞之间的实心度、紧凑度、偏心率、范围、平均强度和卫星物体数量(多极纺锤体)显着不同。
MatQuantify 实现了有丝分裂纺锤体图像的自动定量分析。使用该工具,研究人员可以明确测试破坏感兴趣的蛋白质是否会改变中期纺锤体维持,从而影响有丝分裂。