Suppr超能文献

通过对内腔纳米空间的操控来控制量子点超晶格中的电子结构和声子动力学。

Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.

机构信息

Department of Chemistry, Kyoto University , Kyoto 606-8502, Japan.

PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

出版信息

ACS Appl Mater Interfaces. 2016 Jul 20;8(28):18321-7. doi: 10.1021/acsami.6b03219. Epub 2016 Jul 6.

Abstract

Quantum dot (QD) superlattices, periodically ordered array structures of QDs, are expected to provide novel photo-optical functions due to their resonant couplings between adjacent QDs. Here, we computationally demonstrated that electronic structures and phonon dynamics of a QD superlattice can be effectively and selectively controlled by manipulating its interior nanospace, where quantum resonance between neighboring QDs appears, rather than by changing component QD size, shape, compositions, etc. A simple H-passivated Si QD was examined to constitute one-, two-, and three-dimensional QD superlattices, and thermally fluctuating band energies and phonon modes were simulated by finite-temperature ab initio molecular dynamics (MD) simulations. The QD superlattice exhibited a decrease in the band gap energy enhanced by thermal modulations and also exhibited selective extraction of charge carriers out of the component QD, indicating its advantage as a promising platform for implementation in solar cells. Our dynamical phonon analyses based on the ab initio MD simulations revealed that THz-frequency phonon modes were created by an inter-QD crystalline lattice formed in the QD superlattice, which can contribute to low energy thermoelectric conversion and will be useful for direct observation of the dimension-dependent superlattice. Further, we found that crystalline and ligand-originated phonon modes inside each component QD can be independently controlled by asymmetry of the superlattice and by restriction of the interior nanospace, respectively. Taking into account the thermal effects at the finite temperature, we proposed guiding principles for designing efficient and space-saving QD superlattices to develop functional photovoltaic and thermoelectric devices.

摘要

量子点(QD)超晶格是 QD 的周期性有序阵列结构,由于相邻 QD 之间的共振耦合,有望提供新的光电功能。在这里,我们通过计算证明,可以通过操纵其内部纳米空间(量子共振出现在相邻 QD 之间)来有效和选择性地控制 QD 超晶格的电子结构和声子动力学,而不是通过改变组成 QD 的尺寸、形状、组成等来实现。我们选择了一个简单的 H 钝化 Si QD 来构成一维、二维和三维 QD 超晶格,并通过有限温度从头算分子动力学(MD)模拟来模拟热波动能带能量和声子模式。结果表明,QD 超晶格的带隙能量因热调制而降低,并且表现出电荷载流子从组成 QD 中选择性提取的特性,这表明它作为太阳能电池的有前途的平台具有优势。我们基于从头算 MD 模拟的动态声子分析表明,THz 频率的声子模式是由 QD 超晶格中形成的 QD 间晶格子产生的,这有助于实现低能量热电转换,并将有助于对依赖于维度的超晶格的直接观察。此外,我们发现每个组成 QD 内部的晶体和配体起源的声子模式可以通过超晶格的不对称性和内部纳米空间的限制分别独立控制。考虑到有限温度下的热效应,我们提出了设计高效和节省空间的 QD 超晶格的指导原则,以开发功能型光伏和热电器件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验