Kong Youxin, Janssen Bert J C, Malinauskas Tomas, Vangoor Vamshidhar R, Coles Charlotte H, Kaufmann Rainer, Ni Tao, Gilbert Robert J C, Padilla-Parra Sergi, Pasterkamp R Jeroen, Jones E Yvonne
Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
Neuron. 2016 Aug 3;91(3):548-60. doi: 10.1016/j.neuron.2016.06.018. Epub 2016 Jul 7.
Class A plexins (PlxnAs) act as semaphorin receptors and control diverse aspects of nervous system development and plasticity, ranging from axon guidance and neuron migration to synaptic organization. PlxnA signaling requires cytoplasmic domain dimerization, but extracellular regulation and activation mechanisms remain unclear. Here we present crystal structures of PlxnA (PlxnA1, PlxnA2, and PlxnA4) full ectodomains. Domains 1-9 form a ring-like conformation from which the C-terminal domain 10 points away. All our PlxnA ectodomain structures show autoinhibitory, intermolecular "head-to-stalk" (domain 1 to domain 4-5) interactions, which are confirmed by biophysical assays, live cell fluorescence microscopy, and cell-based and neuronal growth cone collapse assays. This work reveals a 2-fold role of the PlxnA ectodomains: imposing a pre-signaling autoinhibitory separation for the cytoplasmic domains via intermolecular head-to-stalk interactions and supporting dimerization-based PlxnA activation upon ligand binding. More generally, our data identify a novel molecular mechanism for preventing premature activation of axon guidance receptors.
A类丛状蛋白(PlxnAs)作为信号素受体,控制神经系统发育和可塑性的多个方面,从轴突导向、神经元迁移到突触组织。PlxnA信号传导需要胞质结构域二聚化,但细胞外调节和激活机制仍不清楚。在这里,我们展示了PlxnA(PlxnA1、PlxnA2和PlxnA4)完整胞外域的晶体结构。结构域1-9形成环状构象,C末端结构域10从该构象向外延伸。我们所有的PlxnA胞外域结构都显示出自身抑制性的分子间“头对柄”(结构域1到结构域4-5)相互作用,这通过生物物理分析、活细胞荧光显微镜检查以及基于细胞和神经元生长锥塌陷分析得到证实。这项工作揭示了PlxnA胞外域的双重作用:通过分子间头对柄相互作用为胞质结构域施加信号前自身抑制性分离,并在配体结合时支持基于二聚化的PlxnA激活。更普遍地说,我们的数据确定了一种防止轴突导向受体过早激活的新分子机制。