Suppr超能文献

用于癌细胞检测的蓝宝石表面功能化石墨烯生物传感器。

Surface Functionalized Graphene Biosensor on Sapphire for Cancer Cell Detection.

作者信息

Joe Daniel J, Hwang Jeonghyun, Johnson Christelle, Cha Ho-Young, Lee Jo-Won, Shen Xiling, Spencer Michael G, Tiwari Sandip, Kim Moonkyung

出版信息

J Nanosci Nanotechnol. 2016 Jan;16(1):144-51. doi: 10.1166/jnn.2016.12042.

Abstract

Graphene has several unique physical, optical and electrical properties such as a two-dimensional (2D) planar structure, high optical transparency and high carrier mobility at room temperature. These make graphene interesting for electrical biosensing. Using a catalyst-free chemical vapor deposition (CVD) method, graphene film is grown on a sapphire substrate. There is a single or a few sheets as confirmed by Raman spectroscopy and atomic force microscopy (AFM). Electrical graphene biosensors are fabricated to detect large-sized biological analytes such as cancer cells. Human colorectal carcinoma cells are sensed by the resistance change of an active bio-functionalized graphene device as the cells are captured by the immobilized antibody surface. The functionalized sensors show an increase in resistance as large as ~20% of the baseline with a small number of adhered cells. This study suggests that the bio-functionalized electrical graphene sensors on sapphire, which is a highly transparent material, can potentially detect circulating tumor cells (CTCs) and monitor cellular electrical behavior while being compatible with fluorescence-based optical-detection bioassays.

摘要

石墨烯具有多种独特的物理、光学和电学性质,如二维(2D)平面结构、高光学透明度以及室温下的高载流子迁移率。这些特性使得石墨烯在电化学生物传感方面具有吸引力。采用无催化剂化学气相沉积(CVD)方法,在蓝宝石衬底上生长石墨烯薄膜。通过拉曼光谱和原子力显微镜(AFM)证实,该薄膜由单层或几层石墨烯片组成。制备了电化学生物传感器以检测诸如癌细胞等大尺寸生物分析物。当固定抗体表面捕获细胞时,通过活性生物功能化石墨烯器件的电阻变化来检测人结肠癌细胞。对于少量粘附细胞,功能化传感器的电阻增加幅度高达基线的约20%。这项研究表明,基于蓝宝石的生物功能化电化学生物传感器是一种高度透明的材料,它有可能检测循环肿瘤细胞(CTC)并监测细胞的电行为,同时与基于荧光的光学检测生物测定兼容。

相似文献

1
Surface Functionalized Graphene Biosensor on Sapphire for Cancer Cell Detection.
J Nanosci Nanotechnol. 2016 Jan;16(1):144-51. doi: 10.1166/jnn.2016.12042.
2
Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication.
Nanoscale. 2012 May 21;4(10):3050-4. doi: 10.1039/c2nr30330b. Epub 2012 Apr 23.
4
van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst.
ACS Nano. 2013 Jan 22;7(1):385-95. doi: 10.1021/nn305486x. Epub 2012 Dec 26.
5
Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.
ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16953-9. doi: 10.1021/acsami.5b03941. Epub 2015 Jul 30.
6
Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
Nanotechnology. 2014 Jul 18;25(28):285302. doi: 10.1088/0957-4484/25/28/285302. Epub 2014 Jun 27.
8
Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing.
Biosens Bioelectron. 2017 Aug 15;94:200-206. doi: 10.1016/j.bios.2017.03.004. Epub 2017 Mar 9.
9
Label free DNA detection using large area graphene based field effect transistor biosensors.
J Nanosci Nanotechnol. 2011 Jun;11(6):5258-63. doi: 10.1166/jnn.2011.3885.
10
Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.
Biosens Bioelectron. 2017 May 15;91:225-231. doi: 10.1016/j.bios.2016.12.041. Epub 2016 Dec 16.

引用本文的文献

1
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells.
Biosensors (Basel). 2021 Aug 18;11(8):281. doi: 10.3390/bios11080281.

本文引用的文献

1
Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD).
J Nanosci Nanotechnol. 2014 Apr;14(4):2979-83. doi: 10.1166/jnn.2014.8583.
2
Selective detection of target proteins by peptide-enabled graphene biosensor.
Small. 2014 Apr 24;10(8):1505-13, 1504. doi: 10.1002/smll.201302188. Epub 2014 Mar 26.
3
Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets.
Nat Nanotechnol. 2013 Oct;8(10):735-41. doi: 10.1038/nnano.2013.194. Epub 2013 Sep 29.
4
STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry.
Sci Signal. 2013 Mar 19;6(267):ra18. doi: 10.1126/scisignal.2003425.
5
Control of the graphene-protein interface is required to preserve adsorbed protein function.
Anal Chem. 2013 Mar 5;85(5):2754-9. doi: 10.1021/ac303268z. Epub 2013 Feb 19.
6
Improvement of carrier mobility of top-gated SiC epitaxial graphene transistors using a PVA dielectric buffer layer.
Nanotechnology. 2012 Aug 24;23(33):335202. doi: 10.1088/0957-4484/23/33/335202. Epub 2012 Jul 30.
7
A glucose biosensor based on TiO2-Graphene composite.
Biosens Bioelectron. 2012 Oct-Dec;38(1):184-8. doi: 10.1016/j.bios.2012.05.033. Epub 2012 Jun 6.
8
SiC surface orientation and Si loss rate effects on epitaxial graphene.
Nanoscale Res Lett. 2012 Mar 12;7(1):186. doi: 10.1186/1556-276X-7-186.
10
A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS).
Biosens Bioelectron. 2012 Mar 15;33(1):196-203. doi: 10.1016/j.bios.2011.12.052. Epub 2012 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验