Suppr超能文献

基于图像分析和机器学习的番茄幼苗节点检测与节间长度估计

Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning.

作者信息

Yamamoto Kyosuke, Guo Wei, Ninomiya Seishi

机构信息

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishi-Tokyo, Tokyo 188-0002, Japan.

PS Solutions Corp., 1-5-2 Higashi-Shimbashi, Minato-ku, Tokyo 105-7104, Japan.

出版信息

Sensors (Basel). 2016 Jul 7;16(7):1044. doi: 10.3390/s16071044.

Abstract

Seedling vigor in tomatoes determines the quality and growth of fruits and total plant productivity. It is well known that the salient effects of environmental stresses appear on the internode length; the length between adjoining main stem node (henceforth called node). In this study, we develop a method for internode length estimation using image processing technology. The proposed method consists of three steps: node detection, node order estimation, and internode length estimation. This method has two main advantages: (i) as it uses machine learning approaches for node detection, it does not require adjustment of threshold values even though seedlings are imaged under varying timings and lighting conditions with complex backgrounds; and (ii) as it uses affinity propagation for node order estimation, it can be applied to seedlings with different numbers of nodes without prior provision of the node number as a parameter. Our node detection results show that the proposed method can detect 72% of the 358 nodes in time-series imaging of three seedlings (recall = 0.72, precision = 0.78). In particular, the application of a general object recognition approach, Bag of Visual Words (BoVWs), enabled the elimination of many false positives on leaves occurring in the image segmentation based on pixel color, significantly improving the precision. The internode length estimation results had a relative error of below 15.4%. These results demonstrate that our method has the ability to evaluate the vigor of tomato seedlings quickly and accurately.

摘要

番茄幼苗活力决定果实品质、生长情况及整株植物的生产力。众所周知,环境胁迫的显著影响体现在节间长度上,即相邻主茎节点(以下简称节点)之间的长度。在本研究中,我们开发了一种利用图像处理技术估算节间长度的方法。该方法包括三个步骤:节点检测、节点顺序估计和节间长度估计。此方法有两个主要优点:(i)由于在节点检测中使用了机器学习方法,即使在不同时间、光照条件及复杂背景下对幼苗进行成像,也无需调整阈值;(ii)由于在节点顺序估计中使用了亲和传播算法,无需预先设定节点数量作为参数,就能应用于不同节点数量的幼苗。我们的节点检测结果表明,该方法在对三株幼苗进行时间序列成像时,能检测出358个节点中的72%(召回率 = 0.72,精确率 = 0.78)。特别是,应用一种通用的目标识别方法——视觉词袋(BoVWs),能够消除基于像素颜色的图像分割中出现在叶片上的许多误报,显著提高了精确率。节间长度估计结果的相对误差低于15.4%。这些结果表明,我们的方法有能力快速、准确地评估番茄幼苗的活力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c25/4970091/ec5794ba09c4/sensors-16-01044-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验