Suppr超能文献

开发新型定量构效关系模型以准确预测肺部吸收并替代常规使用的离体呼吸大鼠肺模型。

Development of a Novel Quantitative Structure-Activity Relationship Model to Accurately Predict Pulmonary Absorption and Replace Routine Use of the Isolated Perfused Respiring Rat Lung Model.

机构信息

Refractory Respiratory Inflammation DPU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.

Chemical Sciences, GlaxoSmithKline, Stevenage, UK.

出版信息

Pharm Res. 2016 Nov;33(11):2604-16. doi: 10.1007/s11095-016-1983-4. Epub 2016 Jul 11.

Abstract

PURPOSE

We developed and tested a novel Quantitative Structure-Activity Relationship (QSAR) model to better understand the physicochemical drivers of pulmonary absorption, and to facilitate compound design through improved prediction of absorption. The model was tested using a large array of both existing and newly designed compounds.

METHODS

Pulmonary absorption data was generated using the isolated perfused respiring rat lung (IPRLu) model for 82 drug discovery compounds and 17 marketed drugs. This dataset was used to build a novel QSAR model based on calculated physicochemical properties. A further 9 compounds were used to test the model's predictive capability.

RESULTS

The QSAR model performed well on the 9 compounds in the "Test set" with a predicted versus observed correlation of R(2) = 0.85, and >65% of compounds correctly categorised. Calculated descriptors associated with permeability and hydrophobicity positively correlated with pulmonary absorption, whereas those associated with charge, ionisation and size negatively correlated.

CONCLUSIONS

The novel QSAR model described here can replace routine generation of IPRLu model data for ranking and classifying compounds prior to synthesis. It will also provide scientists working in the field of inhaled drug discovery with a deeper understanding of the physicochemical drivers of pulmonary absorption based on a relevant respiratory compound dataset.

摘要

目的

我们开发并测试了一种新的定量构效关系(QSAR)模型,以更好地了解肺部吸收的物理化学驱动因素,并通过提高吸收预测能力来促进化合物设计。该模型使用大量现有和新设计的化合物进行了测试。

方法

使用离体呼吸大鼠肺(IPRLu)模型为 82 种药物发现化合物和 17 种市售药物生成肺部吸收数据。该数据集用于构建基于计算物理化学性质的新型 QSAR 模型。另外 9 种化合物用于测试模型的预测能力。

结果

QSAR 模型在“测试集”中的 9 种化合物中表现良好,预测与观察的相关性 R(2)=0.85,>65%的化合物被正确分类。与通透性和疏水性相关的计算描述符与肺部吸收呈正相关,而与电荷、离解和大小相关的描述符则呈负相关。

结论

本文描述的新型 QSAR 模型可以替代常规的 IPRLu 模型数据生成,用于在合成前对化合物进行排序和分类。它还将为从事吸入药物发现领域的科学家提供基于相关呼吸化合物数据集的肺部吸收物理化学驱动因素的更深入理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed94/5040732/1d883dc1e8ad/11095_2016_1983_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验