Suppr超能文献

基于机器学习的定量构效关系模型的综合策略。

Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models.

作者信息

Mao Jiashun, Akhtar Javed, Zhang Xiao, Sun Liang, Guan Shenghui, Li Xinyu, Chen Guangming, Liu Jiaxin, Jeon Hyeon-Nae, Kim Min Sung, No Kyoung Tai, Wang Guanyu

机构信息

The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea.

Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China.

出版信息

iScience. 2021 Aug 28;24(9):103052. doi: 10.1016/j.isci.2021.103052. eCollection 2021 Sep 24.

Abstract

Early quantitative structure-activity relationship (QSAR) technologies have unsatisfactory versatility and accuracy in fields such as drug discovery because they are based on traditional machine learning and interpretive expert features. The development of Big Data and deep learning technologies significantly improve the processing of unstructured data and unleash the great potential of QSAR. Here we discuss the integration of wet experiments (which provide experimental data and reliable verification), molecular dynamics simulation (which provides mechanistic interpretation at the atomic/molecular levels), and machine learning (including deep learning) techniques to improve QSAR models. We first review the history of traditional QSAR and point out its problems. We then propose a better QSAR model characterized by a new iterative framework to integrate machine learning with disparate data input. Finally, we discuss the application of QSAR and machine learning to many practical research fields, including drug development and clinical trials.

摘要

早期的定量构效关系(QSAR)技术在药物发现等领域的通用性和准确性并不理想,因为它们基于传统机器学习和解释性专家特征。大数据和深度学习技术的发展显著改善了非结构化数据的处理,并释放了QSAR的巨大潜力。在此,我们讨论湿实验(提供实验数据和可靠验证)、分子动力学模拟(在原子/分子水平提供机理解释)和机器学习(包括深度学习)技术的整合,以改进QSAR模型。我们首先回顾传统QSAR的历史并指出其问题。然后,我们提出一个更好的QSAR模型,其特征是一个新的迭代框架,用于将机器学习与不同的数据输入相结合。最后,我们讨论QSAR和机器学习在许多实际研究领域的应用,包括药物开发和临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/8441174/4b25890bf97f/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验