Suppr超能文献

恶二唑类抗菌剂与β-内酰胺类药物的体外和体内协同作用

In Vitro and In Vivo Synergy of the Oxadiazole Class of Antibacterials with β-Lactams.

作者信息

Janardhanan Jeshina, Meisel Jayda E, Ding Derong, Schroeder Valerie A, Wolter William R, Mobashery Shahriar, Chang Mayland

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.

Freimann Life Science Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

Antimicrob Agents Chemother. 2016 Aug 22;60(9):5581-8. doi: 10.1128/AAC.00787-16. Print 2016 Sep.

Abstract

The oxadiazole antibacterials target the bacterial cell wall and are bactericidal. We investigated the synergism of ND-421 with the commonly used β-lactams and non-β-lactam antibiotics by the checkerboard method and by time-kill assays. ND-421 synergizes well with β-lactam antibiotics, and it also exhibits a long postantibiotic effect (4.7 h). We also evaluated the in vivo efficacy of ND-421 in a murine neutropenic thigh infection model alone and in combination with oxacillin. ND-421 has in vivo efficacy by itself in a clinically relevant infection model (1.49 log10 bacterial reduction for ND-321 versus 0.36 log10 for linezolid with NRS119) and acts synergistically with β-lactam antibiotics in vitro and in vivo, and the combination of ND-421 with oxacillin is efficacious in a mouse neutropenic thigh methicillin-resistant Staphylococcus aureus (MRSA) infection model (1.60 log10 bacterial reduction). The activity of oxacillin was potentiated in the presence of ND-421, as the strain would have been resistant to oxacillin otherwise.

摘要

恶二唑类抗菌药物作用于细菌细胞壁,具有杀菌作用。我们通过棋盘法和时间杀菌试验研究了ND - 421与常用的β-内酰胺类和非β-内酰胺类抗生素的协同作用。ND - 421与β-内酰胺类抗生素协同作用良好,并且还表现出较长的抗生素后效应(4.7小时)。我们还在小鼠中性粒细胞减少大腿感染模型中单独以及与苯唑西林联合评估了ND - 421的体内疗效。ND - 421在临床相关感染模型中自身具有体内疗效(ND - 321使细菌减少1.49 log10,而利奈唑胺与NRS119联合使细菌减少0.36 log10),并且在体外和体内均与β-内酰胺类抗生素协同作用,在小鼠中性粒细胞减少大腿耐甲氧西林金黄色葡萄球菌(MRSA)感染模型中,ND - 421与苯唑西林联合有效(使细菌减少1.60 log10)。在存在ND - 421的情况下,苯唑西林的活性增强,否则该菌株会对苯唑西林耐药。

相似文献

1
In Vitro and In Vivo Synergy of the Oxadiazole Class of Antibacterials with β-Lactams.
Antimicrob Agents Chemother. 2016 Aug 22;60(9):5581-8. doi: 10.1128/AAC.00787-16. Print 2016 Sep.
2
The oxadiazole antibacterials.
Curr Opin Microbiol. 2016 Oct;33:13-17. doi: 10.1016/j.mib.2016.05.009. Epub 2016 May 27.
3
Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics.
Sci Transl Med. 2012 Mar 21;4(126):126ra35. doi: 10.1126/scitranslmed.3003592.
7
New erythromycin derivatives enhance β-lactam antibiotics against methicillin-resistant Staphylococcus aureus.
Lett Appl Microbiol. 2015 Apr;60(4):352-8. doi: 10.1111/lam.12378. Epub 2015 Jan 14.
9
Mechanism of synergy between SIPI-8294 and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus.
Lett Appl Microbiol. 2016 Jul;63(1):3-10. doi: 10.1111/lam.12583. Epub 2016 Jun 3.
10
Activities of Oxadiazole Antibacterials against Staphylococcus aureus and Other Gram-Positive Bacteria.
Antimicrob Agents Chemother. 2018 Jul 27;62(8). doi: 10.1128/AAC.00453-18. Print 2018 Aug.

引用本文的文献

1
Antibiotic synergy against : a systematic review and meta-analysis.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0119924. doi: 10.1128/aac.01199-24. Epub 2025 Jun 17.
2
Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202414325. doi: 10.1002/anie.202414325. Epub 2025 Feb 10.
4
A Potent and Narrow-Spectrum Antibacterial against Infection.
J Med Chem. 2023 Oct 26;66(20):13891-13899. doi: 10.1021/acs.jmedchem.3c01249. Epub 2023 Sep 21.
6
Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance.
ACS Omega. 2023 Mar 14;8(12):10757-10783. doi: 10.1021/acsomega.3c00312. eCollection 2023 Mar 28.
7
3D-QSAR Studies of 1,2,4-Oxadiazole Derivatives as Sortase A Inhibitors.
Biomed Res Int. 2021 Dec 6;2021:6380336. doi: 10.1155/2021/6380336. eCollection 2021.
8
Unconventional Antibacterials and Adjuvants.
Acc Chem Res. 2021 Feb 16;54(4):917-929. doi: 10.1021/acs.accounts.0c00776. Epub 2021 Jan 29.
9
β-Lactams against the Fortress of the Gram-Positive Bacterium.
Chem Rev. 2021 Mar 24;121(6):3412-3463. doi: 10.1021/acs.chemrev.0c01010. Epub 2020 Dec 29.
10
Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site.
mBio. 2020 May 19;11(3):e00920-20. doi: 10.1128/mBio.00920-20.

本文引用的文献

1
Evolving resistance among Gram-positive pathogens.
Clin Infect Dis. 2015 Sep 15;61 Suppl 2(Suppl 2):S48-57. doi: 10.1093/cid/civ523.
2
Structure-activity relationship for the oxadiazole class of antibiotics.
J Med Chem. 2015 Feb 12;58(3):1380-9. doi: 10.1021/jm501661f. Epub 2015 Jan 30.
3
PBP2a mutations causing high-level Ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates.
Antimicrob Agents Chemother. 2014 Nov;58(11):6668-74. doi: 10.1128/AAC.03622-14. Epub 2014 Aug 25.
4
Ceftaroline-heteroresistant Staphylococcus aureus.
Antimicrob Agents Chemother. 2014 Jun;58(6):3133-6. doi: 10.1128/AAC.02685-13. Epub 2014 Mar 17.
5
7
How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function.
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16808-13. doi: 10.1073/pnas.1300118110. Epub 2013 Oct 1.
8
β-Lactam antibiotics targeting PBP1 selectively enhance daptomycin activity against methicillin-resistant Staphylococcus aureus.
Antimicrob Agents Chemother. 2013 Oct;57(10):5005-12. doi: 10.1128/AAC.00594-13. Epub 2013 Jul 29.
9
The changing epidemiology of methicillin-resistant Staphylococcus aureus in the United States: a national observational study.
Am J Epidemiol. 2013 Apr 1;177(7):666-74. doi: 10.1093/aje/kws273. Epub 2013 Feb 28.
10
Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics.
Sci Transl Med. 2012 Mar 21;4(126):126ra35. doi: 10.1126/scitranslmed.3003592.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验