Suppr超能文献

非传统抗菌药物和佐剂。

Unconventional Antibacterials and Adjuvants.

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, McCourtney Hall, Notre Dame Indiana 46556, United States.

Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006-Madrid Spain.

出版信息

Acc Chem Res. 2021 Feb 16;54(4):917-929. doi: 10.1021/acs.accounts.0c00776. Epub 2021 Jan 29.

Abstract

The need for new classes of antibacterials is genuine in light of the dearth of clinical options for the treatment of bacterial infections. The prodigious discoveries of antibiotics during the 1940s to 1970s, a period wistfully referred to as the Golden Age of Antibiotics, have not kept up in the face of emergence of resistant bacteria in the past few decades. There has been a renewed interest in old drugs, the repurposing of the existing antibiotics and pairing of synergistic antibiotics or of an antibiotic with an adjuvant. Notwithstanding, discoveries of novel classes of these life-saving drugs have become increasingly difficult, calling for new paradigms. We describe, herein, three strategies from our laboratories toward discoveries of new antibacterials and adjuvants using computational and multidisciplinary experimental methods. One approach targets penicillin-binding proteins (PBPs), biosynthetic enzymes of cell-wall peptidoglycan, for discoveries of non-β-lactam inhibitors. Oxadiazoles and quinazolinones emerged as two structural classes out of these efforts. Several hundred analogs of these two classes of antibiotics have been synthesized and fully characterized in our laboratories. A second approach ventures into inhibition of allosteric regulation of cell-wall biosynthesis. The mechanistic details of allosteric regulation of PBP2a of , discovered in our laboratories, is outlined. The allosteric site in this protein is at 60 Å distance to the active site, whereby ligand binding at the former makes access to the latter by the substrate possible. We have documented that both quinazolinones and ceftaroline, a fifth-generation cephalosporin, bind to the allosteric site in manifestation of the antibacterial activity. Attempts at inhibition of the regulatory phosphorylation events identified three classes of antibacterial adjuvants and one class of antibacterials, the picolinamides. The chemical structures for these hits went through diversification by synthesis of hundreds of analogs. These analogs were characterized in various assays for identification of leads with adjuvant and antibacterial activities. Furthermore, we revisited the mechanism of bulgecins, a class of adjuvants discovered and abandoned in the 1980s. These compounds potentiate the activities of β-lactam antibiotics by the formation of bulges at the sites of septum formation during bacterial replication, which are points of structural weakness in the envelope. These bulges experience rupture, which leads to bacterial death. Bulgecin A inhibits the lytic transglycosylase Slt of as a likely transition-state mimetic for its turnover of the cell-wall peptidoglycan. Once damage to cell wall is inflicted by a β-lactam antibiotic, the function of Slt is to repair the damage. When Slt is inhibited by bulgecin A, the organism cannot cope with it and would undergo rapid lysis. Bulgecin A is an effective adjuvant of β-lactam antibiotics. These discoveries of small-molecule classes of antibacterials or of adjuvants to antibacterials hold promise in strategies for treatment of bacterial infections.

摘要

鉴于治疗细菌感染的临床选择有限,确实需要开发新类别的抗菌药物。在过去几十年中,抗生素的耐药性不断出现,而在 20 世纪 40 年代至 70 年代抗生素的大量发现,人们不禁怀念起抗生素的“黄金时代”。人们对旧药物重新产生了兴趣,重新利用现有的抗生素,并将协同抗生素或抗生素与佐剂配对。尽管如此,发现这些救命药物的新型药物变得越来越困难,需要新的模式。我们在这里描述了我们实验室的三种策略,旨在通过计算和多学科实验方法发现新的抗菌药物和佐剂。一种方法针对青霉素结合蛋白(PBPs),即细胞壁肽聚糖的生物合成酶,用于发现非β-内酰胺抑制剂。在这些努力中出现了恶二唑和喹唑啉酮这两种结构类别。我们实验室已经合成并充分表征了这两类抗生素的数百种类似物。第二种方法冒险进入细胞壁生物合成的变构调节抑制。我们实验室发现的 PBP2a 的变构调节的机制细节被概述出来。该蛋白质的变构位点与活性位点相距 60Å,因此配体在前者的结合使底物能够进入后者。我们已经证明,喹唑啉酮和头孢他啶(第五代头孢菌素)都结合到该蛋白的变构位点,从而表现出抗菌活性。抑制调节磷酸化事件的尝试鉴定出三种抗菌佐剂和一种抗菌药物类别的 picolinamides。这些命中的化学结构通过合成数百种类似物进行了多样化。这些类似物在各种测定中进行了表征,以鉴定具有佐剂和抗菌活性的先导化合物。此外,我们重新研究了 bulgecins 的机制,bulgecins 是一种在 20 世纪 80 年代被发现和放弃的佐剂。这些化合物通过在细菌复制过程中形成隔膜形成部位的膨出,增强β-内酰胺抗生素的活性,在包膜中,这些膨出是结构薄弱的部位。这些膨出经历破裂,导致细菌死亡。Bulgecin A 抑制裂解转糖基酶 Slt,作为其细胞壁肽聚糖周转的可能过渡态模拟物。一旦β-内酰胺抗生素对细胞壁造成损伤,Slt 的功能就是修复损伤。当 bulgecin A 抑制 Slt 时,生物体无法应对,会迅速裂解。Bulgecin A 是β-内酰胺抗生素的有效佐剂。这些发现的抗菌小分子类药物或抗菌药物佐剂为治疗细菌感染提供了有希望的策略。

相似文献

1
Unconventional Antibacterials and Adjuvants.非传统抗菌药物和佐剂。
Acc Chem Res. 2021 Feb 16;54(4):917-929. doi: 10.1021/acs.accounts.0c00776. Epub 2021 Jan 29.

引用本文的文献

本文引用的文献

2
Ultrapotent Inhibitor of Growth, Which Suppresses Recurrence .超强生长抑制剂,抑制复发。
J Med Chem. 2020 Oct 22;63(20):11934-11944. doi: 10.1021/acs.jmedchem.0c01198. Epub 2020 Oct 6.
3
Discovery of a Potent Picolinamide Antibacterial Active against .发现一种对……具有强效抗菌活性的吡啶甲酰胺
ACS Infect Dis. 2020 Sep 11;6(9):2362-2368. doi: 10.1021/acsinfecdis.0c00479. Epub 2020 Aug 17.
6
Activity-directed expansion of a series of antibacterial agents.基于活性导向的抗菌剂系列拓展。
Chem Commun (Camb). 2020 Jul 21;56(58):8047-8050. doi: 10.1039/d0cc02361b.
7
Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery.药物研发中的新型1,2,4-恶二唑衍生物
Pharmaceuticals (Basel). 2020 May 29;13(6):111. doi: 10.3390/ph13060111.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验