Corbin Laura J, Richmond Rebecca C, Wade Kaitlin H, Burgess Stephen, Bowden Jack, Smith George Davey, Timpson Nicholas J
MRC Integrative Epidemiology Unit, University of Bristol, Bristol, U.K.
MRC Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K.
Diabetes. 2016 Oct;65(10):3002-7. doi: 10.2337/db16-0418. Epub 2016 Jul 8.
This study focused on resolving the relationship between BMI and type 2 diabetes. The availability of multiple variants associated with BMI offers a new chance to resolve the true causal effect of BMI on type 2 diabetes; however, the properties of these associations and their validity as genetic instruments need to be considered alongside established and new methods for undertaking Mendelian randomization (MR). We explore the potential for pleiotropic genetic variants to generate bias, revise existing estimates, and illustrate value in new analysis methods. A two-sample MR approach with 96 genetic variants was used with three different analysis methods, two of which (MR-Egger and the weighted median) have been developed specifically to address problems of invalid instrumental variables. We estimate an odds ratio for type 2 diabetes per unit increase in BMI (kg/m(2)) of between 1.19 and 1.38, with the most stable estimate using all instruments and a weighted median approach (1.26 [95% CI 1.17, 1.34]). TCF7L2(rs7903146) was identified as a complex effect or pleiotropic instrument, and removal of this variant resulted in convergence of causal effect estimates from different causal analysis methods. This indicated the potential for pleiotropy to affect estimates and differences in performance of alternative analytical methods. In a real type 2 diabetes-focused example, this study demonstrates the potential impact of invalid instruments on causal effect estimates and the potential for new approaches to mitigate the bias caused.
本研究聚焦于解决体重指数(BMI)与2型糖尿病之间的关系。与BMI相关的多个变异的存在为解决BMI对2型糖尿病的真正因果效应提供了新机会;然而,这些关联的性质及其作为基因工具的有效性需要与进行孟德尔随机化(MR)的既定方法和新方法一并考虑。我们探讨了多效性基因变异产生偏差、修正现有估计值的可能性,并说明了新分析方法的价值。采用了一种包含96个基因变异的双样本MR方法以及三种不同的分析方法,其中两种方法(MR-Egger和加权中位数法)是专门为解决无效工具变量问题而开发的。我们估计BMI每增加一个单位(kg/m²),2型糖尿病的比值比在1.19至1.38之间,使用所有工具和加权中位数法得出的估计值最为稳定(1.26 [95%置信区间1.17, 1.34])。TCF7L2(rs7903146)被确定为具有复杂效应或多效性的工具变量,去除该变异会导致不同因果分析方法得出的因果效应估计值趋于一致。这表明多效性可能影响估计值以及替代分析方法性能的差异。在一个以2型糖尿病为重点的实际例子中,本研究证明了无效工具变量对因果效应估计值的潜在影响以及新方法减轻由此导致的偏差的潜力。