Suppr超能文献

用于全基因组CRISPR设计与优化的CRISPR-DO

CRISPR-DO for genome-wide CRISPR design and optimization.

作者信息

Ma Jian, Köster Johannes, Qin Qian, Hu Shengen, Li Wei, Chen Chenhao, Cao Qingyi, Wang Jinzeng, Mei Shenglin, Liu Qi, Xu Han, Liu Xiaole Shirley

机构信息

School of Life Science and Technology, Tongji University, Shanghai 200092, China.

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Bioinformatics. 2016 Nov 1;32(21):3336-3338. doi: 10.1093/bioinformatics/btw476. Epub 2016 Jul 10.

Abstract

MOTIVATION

Despite the growing popularity in using CRISPR/Cas9 technology for genome editing and gene knockout, its performance still relies on well-designed single guide RNAs (sgRNA). In this study, we propose a web application for the Design and Optimization (CRISPR-DO) of guide sequences that target both coding and non-coding regions in spCas9 CRISPR system across human, mouse, zebrafish, fly and worm genomes. CRISPR-DO uses a computational sequence model to predict sgRNA efficiency, and employs a specificity scoring function to evaluate the potential of off-target effect. It also provides information on functional conservation of target sequences, as well as the overlaps with exons, putative regulatory sequences and single-nucleotide polymorphisms (SNPs). The web application has a user-friendly genome-browser interface to facilitate the selection of the best target DNA sequences for experimental design.

AVAILABILITY AND IMPLEMENTATION

CRISPR-DO is available at http://cistrome.org/crispr/ CONTACT: qiliu@tongji.edu.cn or hanxu@jimmy.harvard.edu or xsliu@jimmy.harvard.eduSupplementary information: Supplementary data are available at Bioinformatics online.

摘要

动机

尽管使用CRISPR/Cas9技术进行基因组编辑和基因敲除越来越流行,但其性能仍依赖于精心设计的单向导RNA(sgRNA)。在本研究中,我们提出了一种用于设计和优化(CRISPR-DO)引导序列的网络应用程序,该引导序列靶向人、小鼠、斑马鱼、果蝇和线虫基因组中spCas9 CRISPR系统的编码和非编码区域。CRISPR-DO使用计算序列模型来预测sgRNA效率,并采用特异性评分函数来评估脱靶效应的可能性。它还提供有关靶序列功能保守性的信息,以及与外显子、推定调控序列和单核苷酸多态性(SNP)的重叠信息。该网络应用程序具有用户友好的基因组浏览器界面,便于为实验设计选择最佳靶DNA序列。

可用性和实施

CRISPR-DO可在http://cistrome.org/crispr/获取 联系方式:qiliu@tongji.edu.cnhanxu@jimmy.harvard.eduxsliu@jimmy.harvard.edu 补充信息:补充数据可在《生物信息学》在线获取。

相似文献

1
CRISPR-DO for genome-wide CRISPR design and optimization.
Bioinformatics. 2016 Nov 1;32(21):3336-3338. doi: 10.1093/bioinformatics/btw476. Epub 2016 Jul 10.
2
CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences.
PLoS One. 2015 Mar 5;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
3
Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
Bioinformatics. 2020 May 1;36(9):2684-2689. doi: 10.1093/bioinformatics/btaa041.
4
SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing.
G3 (Bethesda). 2020 Feb 6;10(2):489-494. doi: 10.1534/g3.119.400904.
5
CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity.
Bioinformatics. 2019 Aug 15;35(16):2783-2789. doi: 10.1093/bioinformatics/bty1061.
6
Crisflash: open-source software to generate CRISPR guide RNAs against genomes annotated with individual variation.
Bioinformatics. 2019 Sep 1;35(17):3146-3147. doi: 10.1093/bioinformatics/btz019.
7
KOnezumi: a web application for automating gene disruption strategies to generate knockout mice.
Bioinformatics. 2019 Sep 15;35(18):3479-3481. doi: 10.1093/bioinformatics/btz090.
8
CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes.
Bioinformatics. 2019 Jul 15;35(14):2501-2503. doi: 10.1093/bioinformatics/bty970.
9
New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
Yeast. 2015 Dec;32(12):711-20. doi: 10.1002/yea.3098. Epub 2015 Sep 21.
10
Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments.
Nat Protoc. 2018 May;13(5):946-986. doi: 10.1038/nprot.2018.005. Epub 2018 Apr 12.

引用本文的文献

1
CRISPR-Cas9 Targeting PCSK9: A Promising Therapeutic Approach for Atherosclerosis.
J Cardiovasc Transl Res. 2025 Apr;18(2):424-441. doi: 10.1007/s12265-024-10587-7. Epub 2025 Jan 13.
2
State of the art CRISPR-based strategies for cancer diagnostics and treatment.
Biomark Res. 2024 Dec 18;12(1):156. doi: 10.1186/s40364-024-00701-x.
3
Translation of genome-wide association study: from genomic signals to biological insights.
Front Genet. 2024 Oct 3;15:1375481. doi: 10.3389/fgene.2024.1375481. eCollection 2024.
4
From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar;398(3):2259-2273. doi: 10.1007/s00210-024-03509-6. Epub 2024 Oct 15.
5
In vivo CRISPR screens identify a dual function of MEN1 in regulating tumor-microenvironment interactions.
Nat Genet. 2024 Sep;56(9):1890-1902. doi: 10.1038/s41588-024-01874-9. Epub 2024 Sep 3.
6
A Functional Survey of the Regulatory Landscape of Estrogen Receptor-Positive Breast Cancer Evolution.
Cancer Discov. 2024 Sep 4;14(9):1612-1630. doi: 10.1158/2159-8290.CD-23-1157.
7
Review of applications of artificial intelligence (AI) methods in crop research.
J Appl Genet. 2024 May;65(2):225-240. doi: 10.1007/s13353-023-00826-z. Epub 2024 Jan 13.
8
Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects.
Int J Mol Sci. 2023 Mar 27;24(7):6261. doi: 10.3390/ijms24076261.
9
CRISPR genome editing using computational approaches: A survey.
Front Bioinform. 2023 Jan 11;2:1001131. doi: 10.3389/fbinf.2022.1001131. eCollection 2022.
10
Connexin 43 Hemichannels Regulate Osteoblast to Osteocyte Differentiation.
Front Cell Dev Biol. 2022 May 27;10:892229. doi: 10.3389/fcell.2022.892229. eCollection 2022.

本文引用的文献

1
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
Nat Biotechnol. 2016 Feb;34(2):184-191. doi: 10.1038/nbt.3437. Epub 2016 Jan 18.
2
CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation.
Bioinformatics. 2015 Nov 15;31(22):3676-8. doi: 10.1093/bioinformatics/btv423. Epub 2015 Jul 23.
3
Sequence determinants of improved CRISPR sgRNA design.
Genome Res. 2015 Aug;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub 2015 Jun 10.
4
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
Nat Biotechnol. 2015 Jun;33(6):661-7. doi: 10.1038/nbt.3235. Epub 2015 May 11.
5
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
6
CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants.
Mol Plant. 2014 Sep;7(9):1494-1496. doi: 10.1093/mp/ssu044. Epub 2014 Apr 9.
7
E-CRISP: fast CRISPR target site identification.
Nat Methods. 2014 Feb;11(2):122-3. doi: 10.1038/nmeth.2812.
8
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
Nat Biotechnol. 2014 Mar;32(3):279-284. doi: 10.1038/nbt.2808. Epub 2014 Jan 26.
9
Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases.
Bioinformatics. 2014 May 15;30(10):1473-5. doi: 10.1093/bioinformatics/btu048. Epub 2014 Jan 24.
10
CasOT: a genome-wide Cas9/gRNA off-target searching tool.
Bioinformatics. 2014 Apr 15;30(8):1180-1182. doi: 10.1093/bioinformatics/btt764. Epub 2014 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验