Suppr超能文献

使用宿主对病原体反应的预测性调控网络模型整合转录组学和蛋白质组学数据

Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

作者信息

Chasman Deborah, Walters Kevin B, Lopes Tiago J S, Eisfeld Amie J, Kawaoka Yoshihiro, Roy Sushmita

机构信息

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS Comput Biol. 2016 Jul 12;12(7):e1005013. doi: 10.1371/journal.pcbi.1005013. eCollection 2016 Jul.

Abstract

Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

摘要

哺乳动物宿主对病原体感染的反应由一个复杂的调控网络控制,该网络将转录因子和信号蛋白等调控蛋白与靶基因连接起来。传染病研究中的一个重要挑战是了解哺乳动物宿主对不同病原体的反应在分子层面的异同。最近,系统生物学研究产生了丰富的组学图谱集,在多个层面测量宿主对流感病毒等感染因子的反应。为了全面了解驱动宿主对多种感染因子反应的调控网络,我们使用基于网络的方法整合了宿主转录组和蛋白质组。我们的方法结合了基于表达的调控网络推断、基于结构稀疏性的回归和网络信息流,以推断表达模块的假定物理调控程序。我们应用我们的方法来识别驱动宿主对多种流感感染反应的调控网络、模块和子网络。推断出的调控网络和模块在已知的免疫反应途径中显著富集,并在不同致病性病毒感染的差异反应中涉及凋亡、剪接和干扰素信号传导过程。我们使用学到的网络对调控因子进行优先级排序,并研究病毒和时间点特异性网络。基于RNAi的预测调控因子敲低对病毒复制有显著影响,其中包括几个以前未知的调控因子。总之,我们的综合分析确定了新的模块水平模式,这些模式捕捉了毒株和致病性特异性的表达模式,并有助于识别宿主对流感感染反应的重要调控因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c21e/4942116/355f2420d9c9/pcbi.1005013.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验