真菌共培养:释放木质纤维素生物质高效生物转化的潜力。
Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass.
作者信息
Vieira Rafael Icaro Matos, Peixoto Alencar da Silva, Monclaro Antonielle Vieira, Ricart Carlos André Ornelas, Filho Edivaldo Ximenes Ferreira, Miller Robert Neil Gerard, Gomes Taísa Godoy
机构信息
Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil.
Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
出版信息
J Fungi (Basel). 2025 Jun 17;11(6):458. doi: 10.3390/jof11060458.
Microbial decomposition of persistent natural compounds such as phenolic lignin and polysaccharides in plant cell walls plays a crucial role in the global carbon cycle and underpins diverse biotechnological applications. Among microbial decomposers, fungi from the and phyla have evolved specialized mechanisms for efficient lignocellulosic biomass degradation, employing extracellular enzymes and synergistic fungal consortia. Fungal coculture, defined as the controlled, axenic cultivation of multiple fungal species or strains in a single culture medium, is a promising strategy for industrial processes. This approach to biomass conversion offers potential for enhancing production of enzymes, biofuels, and other high-value bioproducts, while enabling investigation of ecological dynamics and metabolic pathways relevant to biorefinery operations. Lignocellulosic biomass conversion into fuels, energy, and biochemicals is central to the bioeconomy, integrating advanced biotechnology with sustainable resource use. Recent advancements in -omics technologies, including genomics, transcriptomics, and proteomics, have facilitated detailed analysis of fungal metabolism, uncovering novel secondary metabolites and enzymatic pathways activated under specific growth conditions. This review highlights the potential of fungal coculture systems to advance sustainable biomass conversion in alignment with circular bioeconomy goals.
植物细胞壁中酚类木质素和多糖等持久性天然化合物的微生物分解在全球碳循环中起着关键作用,并支撑着多种生物技术应用。在微生物分解者中,来自[具体菌门]和[具体菌门]的真菌已经进化出专门的机制,通过分泌胞外酶和协同真菌群落来高效降解木质纤维素生物质。真菌共培养,即在单一培养基中对多种真菌物种或菌株进行受控的无菌培养,是工业生产中有前景的策略。这种生物质转化方法具有提高酶、生物燃料和其他高价值生物产品产量的潜力,同时能够研究与生物炼制操作相关的生态动力学和代谢途径。将木质纤维素生物质转化为燃料、能源和生化物质是生物经济的核心,它将先进生物技术与可持续资源利用相结合。包括基因组学、转录组学和蛋白质组学在内的组学技术的最新进展,有助于详细分析真菌代谢,揭示在特定生长条件下激活的新型次生代谢产物和酶促途径。本综述强调了真菌共培养系统在推进与循环生物经济目标相一致的可持续生物质转化方面的潜力。