Suppr超能文献

探索摇头丸(MDMA)废水数据的功能数据分析和小波主成分分析。

Exploring functional data analysis and wavelet principal component analysis on ecstasy (MDMA) wastewater data.

作者信息

Salvatore Stefania, Bramness Jørgen G, Røislien Jo

机构信息

Norwegian Centre for Addiction Research, University of Oslo, Oslo, Norway.

Oslo Centre for Biostatistics and Epidemiology, Institute of Basic Medical Sciences, Oslo, Norway.

出版信息

BMC Med Res Methodol. 2016 Jul 12;16:81. doi: 10.1186/s12874-016-0179-2.

Abstract

BACKGROUND

Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally.

METHODS

We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data.

RESULTS

The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data.

CONCLUSION

FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.

摘要

背景

基于废水的流行病学(WBE)是药物使用流行病学中的一种新方法,旨在监测社区中各种药物的使用程度。在本研究中,我们研究功能主成分分析(FPCA)作为分析WBE数据的工具,并将其与传统主成分分析(PCA)以及在时间上更灵活的小波主成分分析(WPCA)进行比较。

方法

我们分析了2013年3月一周内每天收集的来自42个欧洲城市的废水时间数据。使用傅里叶和B样条基函数以及三个不同的平滑参数,通过FPCA提取摇头丸(MDMA)的主要时间特征,同时使用不同的母小波和收缩规则进行PCA和WPCA。通过自抽样和对缺失数据的敏感性分析来探索FPCA的稳定性。

结果

根据基函数和平滑的选择,前三个主成分(PC)、功能主成分(FPC)和小波主成分(WPC)解释了城市间时间变化的87.5 - 99.6%。从PCA、FPCA和WPCA中提取的时间特征是一致的。使用傅里叶基函数和共同最优平滑的FPCA最稳定,对缺失数据最不敏感。

结论

FPCA对于分析废水数据中的时间变化是一种灵活且易于分析处理的方法,并且对缺失数据具有鲁棒性。WPCA未揭示FPCA未捕捉到的数据中的任何快速时间变化。总体而言,结果表明在分析WBE数据时,以傅里叶基函数和共同最优平滑参数的FPCA是最准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3857/4942983/dff3d1cd7499/12874_2016_179_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验