Suppr超能文献

介绍元划分,一种探索影响生态效应大小因素的有用方法。

Introducing Meta-Partition, a Useful Methodology to Explore Factors That Influence Ecological Effect Sizes.

作者信息

Ortega Zaida, Martín-Vallejo Javier, Mencía Abraham, Galindo-Villardón Maria Purificación, Pérez-Mellado Valentín

机构信息

Department of Animal Biology, University of Salamanca, Salamanca, Spain.

Department of Statistics, University of Salamanca, Salamanca, Spain.

出版信息

PLoS One. 2016 Jul 13;11(7):e0158624. doi: 10.1371/journal.pone.0158624. eCollection 2016.

Abstract

The study of the heterogeneity of effect sizes is a key aspect of ecological meta-analyses. Here we propose a meta-analytic methodology to study the influence of moderators in effect sizes by splitting heterogeneity: meta-partition. To introduce this methodology, we performed a meta-partition of published data about the traits that influence species sensitivity to habitat loss, that have been previously analyzed through meta-regression. Thus, here we aim to introduce meta-partition and to make an initial comparison with meta-regression. Meta-partition algorithm consists of three steps. Step 1 is to study the heterogeneity of effect sizes under the assumption of fixed effect model. If heterogeneity is found, we perform step 2, that is, to partition the heterogeneity by the moderator that minimizes heterogeneity within a subset while maximizing heterogeneity between subsets. Then, if effect sizes of the subset are still heterogeneous, we repeat step 1 and 2 until we reach final subsets. Finally, step 3 is to integrate effect sizes of final subsets, with fixed effect model if there is homogeneity, and with random effects model if there is heterogeneity. Results show that meta-partition is valuable to assess the importance of moderators in explaining heterogeneity of effect sizes, as well as to assess the directions of these relations and to detect possible interactions between moderators. With meta-partition we have been able to evaluate the importance of moderators in a more objective way than with meta-regression, and to visualize the complex relations that may exist between them. As ecological issues are often influenced by several factors interacting in complex ways, ranking the importance of possible moderators and detecting possible interactions would make meta-partition a useful exploration tool for ecological meta-analyses.

摘要

效应量异质性的研究是生态元分析的一个关键方面。在此,我们提出一种元分析方法,通过拆分异质性来研究调节变量对效应量的影响:元划分。为了介绍这种方法,我们对先前通过元回归分析过的、关于影响物种对栖息地丧失敏感性的性状的已发表数据进行了元划分。因此,我们的目的是介绍元划分,并与元回归进行初步比较。元划分算法包括三个步骤。第一步是在固定效应模型假设下研究效应量的异质性。如果发现异质性,我们进行第二步,即通过调节变量对异质性进行划分,该调节变量能使子集中的异质性最小化,同时使子集间的异质性最大化。然后,如果子集的效应量仍然存在异质性,我们重复第一步和第二步,直到得到最终子集。最后,第三步是整合最终子集的效应量,若存在同质性则采用固定效应模型,若存在异质性则采用随机效应模型。结果表明,元划分对于评估调节变量在解释效应量异质性方面的重要性、评估这些关系的方向以及检测调节变量之间可能的相互作用都很有价值。通过元划分,我们能够比元回归更客观地评估调节变量的重要性,并直观呈现它们之间可能存在的复杂关系。由于生态问题往往受到多种因素以复杂方式相互作用的影响,对可能的调节变量的重要性进行排序并检测可能的相互作用将使元划分成为生态元分析的一种有用的探索工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/4943597/f38ebfb7c5b5/pone.0158624.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验