Borchardt Lars, Nickel Winfried, Casco Mirian, Senkovska Irena, Bon Volodymyr, Wallacher Dirk, Grimm Nico, Krause Simon, Silvestre-Albero Joaquín
Institute for Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
Laboratorio de Materiales Avanzados, IUMA, Universidad de Alicante, Ctra. San Vicente del Raspeig-Alicante s/n, E-03690 San Vicente del Raspeig, Spain.
Phys Chem Chem Phys. 2016 Jul 27;18(30):20607-14. doi: 10.1039/c6cp03993f.
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.
多孔模型碳材料中甲烷水合物的成核与生长为优化基于固体的甲烷储存技术的设计指明了方向。对具有明确且均匀孔隙率的预湿碳材料进行的高压甲烷吸附研究表明,受限纳米空间内的甲烷水合物形成可在相对较低压力下发生,甚至低于3 MPa CH4,这取决于孔径和吸附温度。由于冰与液态水相比具有更低的活化能,在低于水冰点的温度下,甲烷水合物的成核与生长得到极大促进。通过水合物形成的甲烷储存容量随着孔径增加而增加,对于25 nm孔径的模型碳材料,直至达到最佳值,与干燥样品相比,吸附容量提高了173%。同步辐射X射线粉末衍射测量(SXRPD)证实形成了具有sI结构的甲烷水合物,这与天然水合物非常吻合。此外,SXRPD数据预计在小孔中生长的甲烷水合物的晶胞参数会有一定收缩。