Mileo Paulo G M, Rogge Sven M J, Houlleberghs Maarten, Breynaert Eric, Martens Johan A, Van Speybroeck Veronique
Center for Molecular Modeling (CMM), Ghent University Technologiepark 46 B-9052 Zwijnaarde Belgium
Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven Celestijnenlaan 200F 3001 Heverlee Belgium.
J Mater Chem A Mater. 2021 Sep 9;9(38):21835-21844. doi: 10.1039/d1ta03105h. eCollection 2021 Oct 5.
Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.
将甲烷储存在笼形水合物中是运输天然气(NG)最有前景的替代方法之一,因为它的气体密度与液化天然气和压缩天然气相似,同时安全风险更低。然而,鉴于形成这些结构所需的极低温度和高压,笼形水合物的实际应用受到限制。因此,有人建议将笼形水合物限制在纳米多孔材料中,因为这可以促进笼形水合物的形成条件,同时保持其甲烷体积储存量。然而,用作笼形水合物生长平台的纳米多孔材料的选择仍然相当随意。在此,我们通过计算探索限制在具有不同孔径、配体密度和配体类型的烷基接枝二氧化硅材料中的笼形水合物的稳定性,以系统的方式应对这一挑战。基于我们的发现,我们能够提出有利于相邻笼形水合物相稳定性的纳米多孔材料的关键设计标准,即大孔径、高配体密度和光滑的孔壁。我们希望这项工作中提供的原子层面的见解将指导并促进旨在促进笼形水合物形成的新型纳米材料的开发。